IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v237y2014i1p303-311.html
   My bibliography  Save this article

A multistage linear stochastic programming model for optimal corporate debt management

Author

Listed:
  • Valladão, Davi M.
  • Veiga, Álvaro
  • Veiga, Geraldo

Abstract

Large corporations fund their capital and operational expenses by issuing bonds with a variety of indexations, denominations, maturities and amortization schedules. We propose a multistage linear stochastic programming model that optimizes bond issuance by minimizing the mean funding cost while keeping leverage under control and insolvency risk at an acceptable level. The funding requirements are determined by a fixed investment schedule with uncertain cash flows. Candidate bonds are described in a detailed and realistic manner. A specific scenario tree structure guarantees computational tractability even for long horizon problems. Based on a simplified example, we present a sensitivity analysis of the first stage solution and the stochastic efficient frontier of the mean-risk trade-off. A realistic exercise stresses the importance of controlling leverage. Based on the proposed model, a financial planning tool has been implemented and deployed for Brazilian oil company Petrobras.

Suggested Citation

  • Valladão, Davi M. & Veiga, Álvaro & Veiga, Geraldo, 2014. "A multistage linear stochastic programming model for optimal corporate debt management," European Journal of Operational Research, Elsevier, vol. 237(1), pages 303-311.
  • Handle: RePEc:eee:ejores:v:237:y:2014:i:1:p:303-311
    DOI: 10.1016/j.ejor.2014.01.028
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221714000496
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2014.01.028?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. R. T. Rockafellar & Roger J.-B. Wets, 1991. "Scenarios and Policy Aggregation in Optimization Under Uncertainty," Mathematics of Operations Research, INFORMS, vol. 16(1), pages 119-147, February.
    2. Date, P. & Canepa, A. & Abdel-Jawad, M., 2011. "A mixed integer linear programming model for optimal sovereign debt issuance," European Journal of Operational Research, Elsevier, vol. 214(3), pages 749-758, November.
    3. Shapiro, Alexander & Tekaya, Wajdi & da Costa, Joari Paulo & Soares, Murilo Pereira, 2013. "Risk neutral and risk averse Stochastic Dual Dynamic Programming method," European Journal of Operational Research, Elsevier, vol. 224(2), pages 375-391.
    4. Petri Hilli & Matti Koivu & Teemu Pennanen & Antero Ranne, 2007. "A stochastic programming model for asset liability management of a Finnish pension company," Annals of Operations Research, Springer, vol. 152(1), pages 115-139, July.
    5. Balibek, Emre & Köksalan, Murat, 2010. "A multi-objective multi-period stochastic programming model for public debt management," European Journal of Operational Research, Elsevier, vol. 205(1), pages 205-217, August.
    6. Willem Klein Haneveld & Matthijs Streutker & Maarten Vlerk, 2010. "An ALM model for pension funds using integrated chance constraints," Annals of Operations Research, Springer, vol. 177(1), pages 47-62, June.
    7. Kouwenberg, Roy, 2001. "Scenario generation and stochastic programming models for asset liability management," European Journal of Operational Research, Elsevier, vol. 134(2), pages 279-292, October.
    8. Willem Haneveld & Maarten Vlerk, 2006. "Integrated Chance Constraints: Reduced Forms and an Algorithm," Computational Management Science, Springer, vol. 3(4), pages 245-269, September.
    9. Chiu, Mei Choi & Wong, Hoi Ying, 2012. "Mean–variance asset–liability management: Cointegrated assets and insurance liability," European Journal of Operational Research, Elsevier, vol. 223(3), pages 785-793.
    10. Rudloff, Birgit & Street, Alexandre & Valladão, Davi M., 2014. "Time consistency and risk averse dynamic decision models: Definition, interpretation and practical consequences," European Journal of Operational Research, Elsevier, vol. 234(3), pages 743-750.
    11. Lewellen, Wilbur G. & Emery, Douglas R., 1986. "Corporate Debt Management and the Value of the Firm," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 21(4), pages 415-426, December.
    12. Stephen P. Bradley & Dwight B. Crane, 1972. "A Dynamic Model for Bond Portfolio Management," Management Science, INFORMS, vol. 19(2), pages 139-151, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dimitris Andriosopoulos & Michalis Doumpos & Panos M. Pardalos & Constantin Zopounidis, 2019. "Computational approaches and data analytics in financial services: A literature review," Journal of the Operational Research Society, Taylor & Francis Journals, vol. 70(10), pages 1581-1599, October.
    2. Kallio, Markku & Halme, Merja & Dehghan Hardoroudi, Nasim & Aspara, Jaakko, 2022. "Transparent structured products for retail investors," European Journal of Operational Research, Elsevier, vol. 302(2), pages 752-767.
    3. Davi Valladão & Thuener Silva & Marcus Poggi, 2019. "Time-consistent risk-constrained dynamic portfolio optimization with transactional costs and time-dependent returns," Annals of Operations Research, Springer, vol. 282(1), pages 379-405, November.
    4. Duarte, Thiago B. & Valladão, Davi M. & Veiga, Álvaro, 2017. "Asset liability management for open pension schemes using multistage stochastic programming under Solvency-II-based regulatory constraints," Insurance: Mathematics and Economics, Elsevier, vol. 77(C), pages 177-188.
    5. Davi Michel Valladão & Álvaro Veiga & Alexandre Street, 2018. "A Linear Stochastic Programming Model for Optimal Leveraged Portfolio Selection," Computational Economics, Springer;Society for Computational Economics, vol. 51(4), pages 1021-1032, April.
    6. Bernardo K. Pagnoncelli & Adriana Piazza, 2017. "The optimal harvesting problem under price uncertainty: the risk averse case," Annals of Operations Research, Springer, vol. 258(2), pages 479-502, November.
    7. Shaik, Saleem, 2015. "Impact of liquidity risk on variations in efficiency and productivity: A panel gamma simulated maximum likelihood estimation," European Journal of Operational Research, Elsevier, vol. 245(2), pages 463-469.
    8. Badri, Hossein & Fatemi Ghomi, S.M.T. & Hejazi, Taha-Hossein, 2017. "A two-stage stochastic programming approach for value-based closed-loop supply chain network design," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 105(C), pages 1-17.
    9. Jin, Man & Zhao, Shunan & Kumbhakar, Subal C., 2019. "Financial constraints and firm productivity: Evidence from Chinese manufacturing," European Journal of Operational Research, Elsevier, vol. 275(3), pages 1139-1156.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Davi Valladão & Thuener Silva & Marcus Poggi, 2019. "Time-consistent risk-constrained dynamic portfolio optimization with transactional costs and time-dependent returns," Annals of Operations Research, Springer, vol. 282(1), pages 379-405, November.
    2. Duarte, Thiago B. & Valladão, Davi M. & Veiga, Álvaro, 2017. "Asset liability management for open pension schemes using multistage stochastic programming under Solvency-II-based regulatory constraints," Insurance: Mathematics and Economics, Elsevier, vol. 77(C), pages 177-188.
    3. Davi Michel Valladão & Álvaro Veiga & Alexandre Street, 2018. "A Linear Stochastic Programming Model for Optimal Leveraged Portfolio Selection," Computational Economics, Springer;Society for Computational Economics, vol. 51(4), pages 1021-1032, April.
    4. Sodhi, ManMohan S. & Tang, Christopher S., 2009. "Modeling supply-chain planning under demand uncertainty using stochastic programming: A survey motivated by asset-liability management," International Journal of Production Economics, Elsevier, vol. 121(2), pages 728-738, October.
    5. ManMohan S. Sodhi, 2005. "LP Modeling for Asset-Liability Management: A Survey of Choices and Simplifications," Operations Research, INFORMS, vol. 53(2), pages 181-196, April.
    6. Maram Alwohaibi & Diana Roman, 2018. "ALM models based on second order stochastic dominance," Computational Management Science, Springer, vol. 15(2), pages 187-211, June.
    7. Wu, Dexiang & Wu, Desheng Dash, 2020. "A decision support approach for two-stage multi-objective index tracking using improved lagrangian decomposition," Omega, Elsevier, vol. 91(C).
    8. Gong, Jiangyue & Gujjula, Krishna Reddy & Ntaimo, Lewis, 2023. "An integrated chance constraints approach for optimal vaccination strategies under uncertainty for COVID-19," Socio-Economic Planning Sciences, Elsevier, vol. 87(PA).
    9. Jacek Gondzio & Roy Kouwenberg, 2001. "High-Performance Computing for Asset-Liability Management," Operations Research, INFORMS, vol. 49(6), pages 879-891, December.
    10. Lukáš Adam & Martin Branda, 2016. "Nonlinear Chance Constrained Problems: Optimality Conditions, Regularization and Solvers," Journal of Optimization Theory and Applications, Springer, vol. 170(2), pages 419-436, August.
    11. Alonso-Ayuso, Antonio & Escudero, Laureano F. & Guignard, Monique & Weintraub, Andres, 2018. "Risk management for forestry planning under uncertainty in demand and prices," European Journal of Operational Research, Elsevier, vol. 267(3), pages 1051-1074.
    12. Soares, Murilo Pereira & Street, Alexandre & Valladão, Davi Michel, 2017. "On the solution variability reduction of Stochastic Dual Dynamic Programming applied to energy planning," European Journal of Operational Research, Elsevier, vol. 258(2), pages 743-760.
    13. Postek, Krzysztof & Romeijnders, Ward & den Hertog, Dick & van der Vlerk, Maartne H., 2016. "Efficient Methods for Several Classes of Ambiguous Stochastic Programming Problems under Mean-MAD Information," Other publications TiSEM a03f895f-b941-41a9-84e0-b, Tilburg University, School of Economics and Management.
    14. Boris Defourny & Damien Ernst & Louis Wehenkel, 2013. "Scenario Trees and Policy Selection for Multistage Stochastic Programming Using Machine Learning," INFORMS Journal on Computing, INFORMS, vol. 25(3), pages 488-501, August.
    15. Bushaj, Sabah & Büyüktahtakın, İ. Esra & Haight, Robert G., 2022. "Risk-averse multi-stage stochastic optimization for surveillance and operations planning of a forest insect infestation," European Journal of Operational Research, Elsevier, vol. 299(3), pages 1094-1110.
    16. Youssouf A. F. Toukourou & Franc{c}ois Dufresne, 2015. "ON Integrated Chance Constraints in ALM for Pension Funds," Papers 1503.05343, arXiv.org.
    17. Miguel A. Lejeune & Janne Kettunen, 2018. "A fractional stochastic integer programming problem for reliability-to-stability ratio in forest harvesting," Computational Management Science, Springer, vol. 15(3), pages 583-597, October.
    18. Paul Glasserman & Amit Sirohi & Allen Zhang, 2017. "The effect of “regular and predictable” issuance on Treasury bill financing," Economic Policy Review, Federal Reserve Bank of New York, issue 23-1, pages 43-56.
    19. Birge, John R. & Júdice, Pedro, 2013. "Long-term bank balance sheet management: Estimation and simulation of risk-factors," Journal of Banking & Finance, Elsevier, vol. 37(12), pages 4711-4720.
    20. Sebastiano Vitali & Ruth Domínguez & Vittorio Moriggia, 2021. "Comparing stage-scenario with nodal formulation for multistage stochastic problems," 4OR, Springer, vol. 19(4), pages 613-631, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:237:y:2014:i:1:p:303-311. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.