IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v235y2014i3p687-696.html
   My bibliography  Save this article

Two-worker blocking congestion model with walk speed m in a no-passing circular passage system

Author

Listed:
  • Hong, Soondo

Abstract

This paper introduces a blocking model and closed-form expression of two workers traveling with walk speed m (m=integer) in a no-passing circular-passage system of n stations and assuming n=m+2, 2m+2,…. We develop a Discrete-Timed Markov Chain (DTMC) model to capture the workers’ changes of walk, pick, and blocked states, and quantify the throughput loss from blocking congestion by deriving a steady state probability in a closed-form expression. We validate the model with a simulation study. Additional simulation comparisons show that the proposed throughput model gives a good approximation of a general-sized system of n stations (i.e., n>2), a practical walk speed system of real number m (i.e., m⩾1), and a bucket brigade order picking application.

Suggested Citation

  • Hong, Soondo, 2014. "Two-worker blocking congestion model with walk speed m in a no-passing circular passage system," European Journal of Operational Research, Elsevier, vol. 235(3), pages 687-696.
  • Handle: RePEc:eee:ejores:v:235:y:2014:i:3:p:687-696
    DOI: 10.1016/j.ejor.2013.10.013
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221713008369
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2013.10.013?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Pratik Parikh & Russell Meller, 2009. "Estimating picker blocking in wide-aisle order picking systems," IISE Transactions, Taylor & Francis Journals, vol. 41(3), pages 232-246.
    2. Soondo Hong & Andrew Johnson & Brett Peters, 2012. "Large-scale order batching in parallel-aisle picking systems," IISE Transactions, Taylor & Francis Journals, vol. 44(2), pages 88-106.
    3. Soondo Hong & Andrew Johnson & Brett Peters, 2013. "A note on picker blocking models in a parallel-aisle order picking system," IISE Transactions, Taylor & Francis Journals, vol. 45(12), pages 1345-1355.
    4. Pratik Parikh & Russell Meller, 2010. "A note on worker blocking in narrow-aisle order picking systems when pick time is non-deterministic," IISE Transactions, Taylor & Francis Journals, vol. 42(6), pages 392-404.
    5. Mowrey, Corinne H. & Parikh, Pratik J., 2014. "Mixed-width aisle configurations for order picking in distribution centers," European Journal of Operational Research, Elsevier, vol. 232(1), pages 87-97.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Glock, Christoph H. & Grosse, Eric H. & Abedinnia, Hamid & Emde, Simon, 2019. "An integrated model to improve ergonomic and economic performance in order picking by rotating pallets," European Journal of Operational Research, Elsevier, vol. 273(2), pages 516-534.
    2. Soondo Hong & Andrew L. Johnson & Brett A. Peters, 2016. "Order batching in a bucket brigade order picking system considering picker blocking," Flexible Services and Manufacturing Journal, Springer, vol. 28(3), pages 425-441, September.
    3. Soondo Hong, 2018. "The effects of picker-oriented operational factors on hand-off delay in a bucket brigade order picking system," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 40(3), pages 781-808, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mowrey, Corinne H. & Parikh, Pratik J., 2014. "Mixed-width aisle configurations for order picking in distribution centers," European Journal of Operational Research, Elsevier, vol. 232(1), pages 87-97.
    2. Hong, Soondo & Johnson, Andrew L. & Peters, Brett A., 2015. "Quantifying picker blocking in a bucket brigade order picking system," International Journal of Production Economics, Elsevier, vol. 170(PC), pages 862-873.
    3. AERTS, Babiche & CORNELISSENS, Trijntje & SÖRENSEN, Kenneth, 2018. "The influence of e-commerce on the design of warehouses - a literature review," Working Papers 2018013, University of Antwerp, Faculty of Business and Economics.
    4. Sainathuni, Bhanuteja & Parikh, Pratik J. & Zhang, Xinhui & Kong, Nan, 2014. "The warehouse-inventory-transportation problem for supply chains," European Journal of Operational Research, Elsevier, vol. 237(2), pages 690-700.
    5. Boysen, Nils & de Koster, René & Weidinger, Felix, 2019. "Warehousing in the e-commerce era: A survey," European Journal of Operational Research, Elsevier, vol. 277(2), pages 396-411.
    6. Sandra Hahn & André Scholz, 2017. "Order Picking in Narrow-Aisle Warehouses: A Fast Approach to Minimize Waiting Times," FEMM Working Papers 170006, Otto-von-Guericke University Magdeburg, Faculty of Economics and Management.
    7. Fangyu Chen & Hongwei Wang & Yong Xie & Chao Qi, 2016. "An ACO-based online routing method for multiple order pickers with congestion consideration in warehouse," Journal of Intelligent Manufacturing, Springer, vol. 27(2), pages 389-408, April.
    8. Hong, Soondo & Johnson, Andrew L. & Peters, Brett A., 2012. "Batch picking in narrow-aisle order picking systems with consideration for picker blocking," European Journal of Operational Research, Elsevier, vol. 221(3), pages 557-570.
    9. Soondo Hong, 2018. "The effects of picker-oriented operational factors on hand-off delay in a bucket brigade order picking system," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 40(3), pages 781-808, July.
    10. Grzegorz Zimon, 2019. "The Impact of Quality Management Systems on the Efficiency of Current Assets Management in Small Commercial Enterprises," European Research Studies Journal, European Research Studies Journal, vol. 0(4), pages 308-316.
    11. van Gils, Teun & Caris, An & Ramaekers, Katrien & Braekers, Kris & de Koster, René B.M., 2019. "Designing efficient order picking systems: The effect of real-life features on the relationship among planning problems," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 125(C), pages 47-73.
    12. Heiko Diefenbach & Simon Emde & Christoph H. Glock & Eric H. Grosse, 2022. "New solution procedures for the order picker routing problem in U-shaped pick areas with a movable depot," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 44(2), pages 535-573, June.
    13. Boysen, Nils & de Koster, René & Füßler, David, 2021. "The forgotten sons: Warehousing systems for brick-and-mortar retail chains," European Journal of Operational Research, Elsevier, vol. 288(2), pages 361-381.
    14. Pan, Jason Chao-Hsien & Shih, Po-Hsun & Wu, Ming-Hung, 2015. "Order batching in a pick-and-pass warehousing system with group genetic algorithm," Omega, Elsevier, vol. 57(PB), pages 238-248.
    15. Derhami, Shahab & Smith, Jeffrey S. & Gue, Kevin R., 2020. "A simulation-based optimization approach to design optimal layouts for block stacking warehouses," International Journal of Production Economics, Elsevier, vol. 223(C).
    16. Valle, Cristiano Arbex & Beasley, John E. & da Cunha, Alexandre Salles, 2017. "Optimally solving the joint order batching and picker routing problem," European Journal of Operational Research, Elsevier, vol. 262(3), pages 817-834.
    17. Hong, Soondo & Kim, Youngjoo, 2017. "A route-selecting order batching model with the S-shape routes in a parallel-aisle order picking system," European Journal of Operational Research, Elsevier, vol. 257(1), pages 185-196.
    18. Minfang Huang & Qiong Guo & Jing Liu & Xiaoxu Huang, 2018. "Mixed Model Assembly Line Scheduling Approach to Order Picking Problem in Online Supermarkets," Sustainability, MDPI, vol. 10(11), pages 1-16, October.
    19. Ardjmand, Ehsan & Shakeri, Heman & Singh, Manjeet & Sanei Bajgiran, Omid, 2018. "Minimizing order picking makespan with multiple pickers in a wave picking warehouse," International Journal of Production Economics, Elsevier, vol. 206(C), pages 169-183.
    20. Çağla Cergibozan & A. Serdar Tasan, 2019. "Order batching operations: an overview of classification, solution techniques, and future research," Journal of Intelligent Manufacturing, Springer, vol. 30(1), pages 335-349, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:235:y:2014:i:3:p:687-696. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.