IDEAS home Printed from https://ideas.repec.org/p/mag/wpaper/170006.html
   My bibliography  Save this paper

Order Picking in Narrow-Aisle Warehouses: A Fast Approach to Minimize Waiting Times

Author

Listed:
  • Sandra Hahn

    (Faculty of Economics and Management, Otto-von-Guericke University Magdeburg)

  • André Scholz

    (Faculty of Economics and Management, Otto-von-Guericke University Magdeburg)

Abstract

Mail order companies like Zalando or Amazon reported a significant increase regarding the number of incoming customer orders in recent years. Customers are served from a central distribution center (warehouse) where requested items of the orders have to be retrieved (picked) from their storage locations. The picking process is performed by human operators (order pickers) who are employed on a large scale in order to enable a fast processing of the orders. However, due to limited space, aisles are often very narrow in warehouses, and order pickers cannot pass or overtake each other. Thus, an order picker may have to wait until another picker has performed his/her operations. The arising waiting times may significantly increase the processing times of the orders, implying that a large number of pickers does not guarantee for small processing times. Therefore, in this paper, the impact of several problem parameters on the amount of waiting time is investigated first and situations are identified where the consideration of waiting times is inevitable for an efficient organization of the picking process. In the second part of the paper, a solution approach, namely a truncated branch-and-bound algorithm, is proposed which aims for the minimization of the waiting times. By means of extensive numerical experiments, it is demonstrated that this approach provides high-quality solutions within a very small amount of computing time.

Suggested Citation

  • Sandra Hahn & André Scholz, 2017. "Order Picking in Narrow-Aisle Warehouses: A Fast Approach to Minimize Waiting Times," FEMM Working Papers 170006, Otto-von-Guericke University Magdeburg, Faculty of Economics and Management.
  • Handle: RePEc:mag:wpaper:170006
    as

    Download full text from publisher

    File URL: http://www.fww.ovgu.de/fww_media/femm/femm_2017/2017_06.pdf
    File Function: First version, 2011
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Pratik Parikh & Russell Meller, 2009. "Estimating picker blocking in wide-aisle order picking systems," IISE Transactions, Taylor & Francis Journals, vol. 41(3), pages 232-246.
    2. Sebastian Henn & Gerhard Wäscher, 2010. "Tabu Search Heuristics for the Order Batching Problem in Manual Order Picking Systems," FEMM Working Papers 100007, Otto-von-Guericke University Magdeburg, Faculty of Economics and Management.
    3. Van Nieuwenhuyse, Inneke & de Koster, René B.M., 2009. "Evaluating order throughput time in 2-block warehouses with time window batching," International Journal of Production Economics, Elsevier, vol. 121(2), pages 654-664, October.
    4. Le-Duc, Tho & de Koster, Rene M.B.M., 2007. "Travel time estimation and order batching in a 2-block warehouse," European Journal of Operational Research, Elsevier, vol. 176(1), pages 374-388, January.
    5. de Koster, Rene & Le-Duc, Tho & Roodbergen, Kees Jan, 2007. "Design and control of warehouse order picking: A literature review," European Journal of Operational Research, Elsevier, vol. 182(2), pages 481-501, October.
    6. Helsgaun, Keld, 2000. "An effective implementation of the Lin-Kernighan traveling salesman heuristic," European Journal of Operational Research, Elsevier, vol. 126(1), pages 106-130, October.
    7. H. Donald Ratliff & Arnon S. Rosenthal, 1983. "Order-Picking in a Rectangular Warehouse: A Solvable Case of the Traveling Salesman Problem," Operations Research, INFORMS, vol. 31(3), pages 507-521, June.
    8. Yu, Mengfei & de Koster, René B.M., 2009. "The impact of order batching and picking area zoning on order picking system performance," European Journal of Operational Research, Elsevier, vol. 198(2), pages 480-490, October.
    9. Pratik Parikh & Russell Meller, 2010. "A note on worker blocking in narrow-aisle order picking systems when pick time is non-deterministic," IISE Transactions, Taylor & Francis Journals, vol. 42(6), pages 392-404.
    10. Roodbergen, Kees Jan & de Koster, Rene, 2001. "Routing order pickers in a warehouse with a middle aisle," European Journal of Operational Research, Elsevier, vol. 133(1), pages 32-43, August.
    11. Sebastian Henn & Sören Koch & Karl Doerner & Christine Strauss & Gerhard Wäscher, 2009. "Metaheuristics for the Order Batching Problem in Manual Order Picking Systems," FEMM Working Papers 09020, Otto-von-Guericke University Magdeburg, Faculty of Economics and Management.
    12. Henn, Sebastian & Wäscher, Gerhard, 2012. "Tabu search heuristics for the order batching problem in manual order picking systems," European Journal of Operational Research, Elsevier, vol. 222(3), pages 484-494.
    13. Theys, Christophe & Bräysy, Olli & Dullaert, Wout & Raa, Birger, 2010. "Using a TSP heuristic for routing order pickers in warehouses," European Journal of Operational Research, Elsevier, vol. 200(3), pages 755-763, February.
    14. Fangyu Chen & Hongwei Wang & Yong Xie & Chao Qi, 2016. "An ACO-based online routing method for multiple order pickers with congestion consideration in warehouse," Journal of Intelligent Manufacturing, Springer, vol. 27(2), pages 389-408, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Boysen, Nils & de Koster, René & Weidinger, Felix, 2019. "Warehousing in the e-commerce era: A survey," European Journal of Operational Research, Elsevier, vol. 277(2), pages 396-411.
    2. Masae, Makusee & Glock, Christoph H. & Vichitkunakorn, Panupong, 2021. "A method for efficiently routing order pickers in the leaf warehouse," International Journal of Production Economics, Elsevier, vol. 234(C).
    3. Çağla Cergibozan & A. Serdar Tasan, 2019. "Order batching operations: an overview of classification, solution techniques, and future research," Journal of Intelligent Manufacturing, Springer, vol. 30(1), pages 335-349, January.
    4. Giannikas, Vaggelis & Lu, Wenrong & Robertson, Brian & McFarlane, Duncan, 2017. "An interventionist strategy for warehouse order picking: Evidence from two case studies," International Journal of Production Economics, Elsevier, vol. 189(C), pages 63-76.
    5. Fangyu Chen & Yongchang Wei & Hongwei Wang, 2018. "A heuristic based batching and assigning method for online customer orders," Flexible Services and Manufacturing Journal, Springer, vol. 30(4), pages 640-685, December.
    6. Gerhard Wäscher & André Scholz, 2015. "A Solution Approach for the Joint Order Batching and Picker Routing Problem in a Two-Block Layout," FEMM Working Papers 150004, Otto-von-Guericke University Magdeburg, Faculty of Economics and Management.
    7. van Gils, Teun & Ramaekers, Katrien & Caris, An & de Koster, René B.M., 2018. "Designing efficient order picking systems by combining planning problems: State-of-the-art classification and review," European Journal of Operational Research, Elsevier, vol. 267(1), pages 1-15.
    8. De Santis, Roberta & Montanari, Roberto & Vignali, Giuseppe & Bottani, Eleonora, 2018. "An adapted ant colony optimization algorithm for the minimization of the travel distance of pickers in manual warehouses," European Journal of Operational Research, Elsevier, vol. 267(1), pages 120-137.
    9. Anderson Rogério Faia Pinto & Marcelo Seido Nagano, 2020. "Genetic algorithms applied to integration and optimization of billing and picking processes," Journal of Intelligent Manufacturing, Springer, vol. 31(3), pages 641-659, March.
    10. A. Scholz & G. Wäscher, 2017. "Order Batching and Picker Routing in manual order picking systems: the benefits of integrated routing," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 25(2), pages 491-520, June.
    11. Matusiak, Marek & de Koster, René & Saarinen, Jari, 2017. "Utilizing individual picker skills to improve order batching in a warehouse," European Journal of Operational Research, Elsevier, vol. 263(3), pages 888-899.
    12. Ardjmand, Ehsan & Shakeri, Heman & Singh, Manjeet & Sanei Bajgiran, Omid, 2018. "Minimizing order picking makespan with multiple pickers in a wave picking warehouse," International Journal of Production Economics, Elsevier, vol. 206(C), pages 169-183.
    13. Hsieh, Ling-Feng & Huang, Yi-Chen, 2011. "New batch construction heuristics to optimise the performance of order picking systems," International Journal of Production Economics, Elsevier, vol. 131(2), pages 618-630, June.
    14. Glock, Christoph H. & Grosse, Eric H. & Abedinnia, Hamid & Emde, Simon, 2019. "An integrated model to improve ergonomic and economic performance in order picking by rotating pallets," European Journal of Operational Research, Elsevier, vol. 273(2), pages 516-534.
    15. Matusiak, Marek & de Koster, René & Kroon, Leo & Saarinen, Jari, 2014. "A fast simulated annealing method for batching precedence-constrained customer orders in a warehouse," European Journal of Operational Research, Elsevier, vol. 236(3), pages 968-977.
    16. Sören Koch & Gerhard Wäscher, 2016. "A grouping genetic algorithm for the Order Batching Problem in distribution warehouses," Journal of Business Economics, Springer, vol. 86(1), pages 131-153, January.
    17. Atashi Khoei, Arsham & Süral, Haldun & Tural, Mustafa Kemal, 2023. "Energy minimizing order picker forklift routing problem," European Journal of Operational Research, Elsevier, vol. 307(2), pages 604-626.
    18. Valle, Cristiano Arbex & Beasley, John E. & da Cunha, Alexandre Salles, 2017. "Optimally solving the joint order batching and picker routing problem," European Journal of Operational Research, Elsevier, vol. 262(3), pages 817-834.
    19. Fangyu Chen & Hongwei Wang & Yong Xie & Chao Qi, 2016. "An ACO-based online routing method for multiple order pickers with congestion consideration in warehouse," Journal of Intelligent Manufacturing, Springer, vol. 27(2), pages 389-408, April.
    20. Scholz, André & Schubert, Daniel & Wäscher, Gerhard, 2017. "Order picking with multiple pickers and due dates – Simultaneous solution of Order Batching, Batch Assignment and Sequencing, and Picker Routing Problems," European Journal of Operational Research, Elsevier, vol. 263(2), pages 461-478.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:mag:wpaper:170006. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Guido Henkel (email available below). General contact details of provider: https://edirc.repec.org/data/fwmagde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.