IDEAS home Printed from https://ideas.repec.org/a/eee/proeco/v121y2009i2p654-664.html
   My bibliography  Save this article

Evaluating order throughput time in 2-block warehouses with time window batching

Author

Listed:
  • Van Nieuwenhuyse, Inneke
  • de Koster, René B.M.

Abstract

Given the increased pressure on short delivery lead times, minimizing customer order throughput times is an important objective in warehousing operations. Warehouse managers can influence the responsiveness of their system through a number of controls, such as the order batching policy, the capacity of the picking and sorting operations, and the picking policy used (pick-and-sort versus sort-while-pick). This paper studies the impact of these controls on the average customer order throughput time in a numerical way, for warehouses with time window batching and separate picking and sorting functions.

Suggested Citation

  • Van Nieuwenhuyse, Inneke & de Koster, René B.M., 2009. "Evaluating order throughput time in 2-block warehouses with time window batching," International Journal of Production Economics, Elsevier, vol. 121(2), pages 654-664, October.
  • Handle: RePEc:eee:proeco:v:121:y:2009:i:2:p:654-664
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0925-5273(09)00072-3
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Vandaele, Nico & Van Nieuwenhuyse, Inneke & Cupers, Sascha, 2003. "Optimal grouping for a nuclear magnetic resonance scanner by means of an open queueing model," European Journal of Operational Research, Elsevier, vol. 151(1), pages 181-192, November.
    2. Chen, Mu-Chen & Wu, Hsiao-Pin, 2005. "An association-based clustering approach to order batching considering customer demand patterns," Omega, Elsevier, vol. 33(4), pages 333-343, August.
    3. Le-Duc, Tho & de Koster, Rene M.B.M., 2007. "Travel time estimation and order batching in a 2-block warehouse," European Journal of Operational Research, Elsevier, vol. 176(1), pages 374-388, January.
    4. de Koster, Rene & Le-Duc, Tho & Roodbergen, Kees Jan, 2007. "Design and control of warehouse order picking: A literature review," European Journal of Operational Research, Elsevier, vol. 182(2), pages 481-501, October.
    5. Gu, Jinxiang & Goetschalckx, Marc & McGinnis, Leon F., 2007. "Research on warehouse operation: A comprehensive review," European Journal of Operational Research, Elsevier, vol. 177(1), pages 1-21, February.
    6. Chew, Ek Peng & Tang, Loon Ching, 1999. "Travel time analysis for general item location assignment in a rectangular warehouse," European Journal of Operational Research, Elsevier, vol. 112(3), pages 582-597, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kim, T.Y., 2018. "Improving warehouse responsiveness by job priority management," Econometric Institute Research Papers EI 2018-02, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    2. repec:eee:proeco:v:189:y:2017:i:c:p:63-76 is not listed on IDEAS
    3. Sören Koch & Gerhard Wäscher, 2016. "A grouping genetic algorithm for the Order Batching Problem in distribution warehouses," Journal of Business Economics, Springer, vol. 86(1), pages 131-153, January.
    4. Sören Koch & Gerhard Wäscher, 2011. "A Grouping Genetic Algorithm for the Order Batching Problem in Distribution Warehouses," FEMM Working Papers 110026, Otto-von-Guericke University Magdeburg, Faculty of Economics and Management.
    5. Hsieh, Ling-Feng & Huang, Yi-Chen, 2011. "New batch construction heuristics to optimise the performance of order picking systems," International Journal of Production Economics, Elsevier, vol. 131(2), pages 618-630, June.
    6. Lu, Wenrong & McFarlane, Duncan & Giannikas, Vaggelis & Zhang, Quan, 2016. "An algorithm for dynamic order-picking in warehouse operations," European Journal of Operational Research, Elsevier, vol. 248(1), pages 107-122.
    7. Sandra Hahn & André Scholz, 2017. "Order Picking in Narrow-Aisle Warehouses: A Fast Approach to Minimize Waiting Times," FEMM Working Papers 170006, Otto-von-Guericke University Magdeburg, Faculty of Economics and Management.
    8. Çağla Cergibozan & A. Serdar Tasan, 0. "Order batching operations: an overview of classification, solution techniques, and future research," Journal of Intelligent Manufacturing, Springer, vol. 0, pages 1-15.
    9. Schleyer, Marc & Gue, Kevin, 2012. "Throughput time distribution analysis for a one-block warehouse," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 48(3), pages 652-666.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:proeco:v:121:y:2009:i:2:p:654-664. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/locate/ijpe .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.