IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v232y2014i1p186-197.html
   My bibliography  Save this article

Optimal policies for a delay time model with postponed replacement

Author

Listed:
  • van Oosterom, C.D.
  • Elwany, A.H.
  • Çelebi, D.
  • van Houtum, G.J.

Abstract

We develop a delay time model (DTM) to determine the optimal maintenance policy under a novel assumption: postponed replacement. Delay time is defined as the time lapse from the occurrence of a defect up until failure. Inspections can be performed to monitor the system state at non-negligible cost. Most works in the literature assume that instantaneous replacement is enforced as soon as a defect is detected at an inspection. In contrast, we relax this assumption and allow replacement to be postponed for an additional time period. The key motivation is to achieve better utilization of the system’s useful life, and reduce replacement costs by providing a sufficient time window to prepare maintenance resources. We model the preventive replacement cost as a non-increasing function of the postponement interval. We then derive the optimal policy under the modified assumption for a system with exponentially distributed defect arrival time, both for a deterministic delay time and for a more general random delay time. For the settings with a deterministic delay time, we also establish an upper bound on the cost savings that can be attained. A numerical case study is presented to benchmark the benefits of our modified assumption against conventional instantaneous replacement discussed in the literature.

Suggested Citation

  • van Oosterom, C.D. & Elwany, A.H. & Çelebi, D. & van Houtum, G.J., 2014. "Optimal policies for a delay time model with postponed replacement," European Journal of Operational Research, Elsevier, vol. 232(1), pages 186-197.
  • Handle: RePEc:eee:ejores:v:232:y:2014:i:1:p:186-197
    DOI: 10.1016/j.ejor.2013.06.038
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221713005456
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2013.06.038?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jones, B. & Jenkinson, I. & Wang, J., 2009. "Methodology of using delay-time analysis for a manufacturing industry," Reliability Engineering and System Safety, Elsevier, vol. 94(1), pages 111-124.
    2. Wenbin Wang, 2008. "Delay Time Modelling," Springer Series in Reliability Engineering, in: Complex System Maintenance Handbook, chapter 14, pages 345-370, Springer.
    3. Wang, Wenbin, 2009. "An inspection model for a process with two types of inspections and repairs," Reliability Engineering and System Safety, Elsevier, vol. 94(2), pages 526-533.
    4. Khac Tuan Huynh & Inma T. Castro & Anne Barros & Christophe Bérenguer, 2012. "Modeling age-based maintenance strategies with minimal repairs for systems subject to competing failure modes due to degradation and shocks," Post-Print hal-00790729, HAL.
    5. Scarf, Philip A., 1997. "On the application of mathematical models in maintenance," European Journal of Operational Research, Elsevier, vol. 99(3), pages 493-506, June.
    6. Zhao, Jianmin & Chan, A.H.C. & Roberts, C. & Madelin, K.B., 2007. "Reliability evaluation and optimisation of imperfect inspections for a component with multi-defects," Reliability Engineering and System Safety, Elsevier, vol. 92(1), pages 65-73.
    7. Cerone, P., 1993. "Inspection interval for maximum future reliability using the delay time model," European Journal of Operational Research, Elsevier, vol. 68(2), pages 236-250, July.
    8. Aven, Terje & Castro, I.T., 2009. "A delay-time model with safety constraint," Reliability Engineering and System Safety, Elsevier, vol. 94(2), pages 261-267.
    9. Huynh, K.T. & Castro, I.T. & Barros, A. & Bérenguer, C., 2012. "Modeling age-based maintenance strategies with minimal repairs for systems subject to competing failure modes due to degradation and shocks," European Journal of Operational Research, Elsevier, vol. 218(1), pages 140-151.
    10. Wang, Wenbin, 2012. "An overview of the recent advances in delay-time-based maintenance modelling," Reliability Engineering and System Safety, Elsevier, vol. 106(C), pages 165-178.
    11. Yeh, Ruey Huei, 1997. "Optimal inspection and replacement policies for multi-state deteriorating systems," European Journal of Operational Research, Elsevier, vol. 96(2), pages 248-259, January.
    12. Wang, Wenbin, 2011. "An inspection model based on a three-stage failure process," Reliability Engineering and System Safety, Elsevier, vol. 96(7), pages 838-848.
    13. Karamatsoukis, C.C. & Kyriakidis, E.G., 2010. "Optimal maintenance of two stochastically deteriorating machines with an intermediate buffer," European Journal of Operational Research, Elsevier, vol. 207(1), pages 297-308, November.
    14. Kurt, Murat & Kharoufeh, Jeffrey P., 2010. "Optimally maintaining a Markovian deteriorating system with limited imperfect repairs," European Journal of Operational Research, Elsevier, vol. 205(2), pages 368-380, September.
    15. A H Christer, 1999. "Developments in delay time analysis for modelling plant maintenance," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 50(11), pages 1120-1137, November.
    16. M I Desa & A H Christer, 2001. "Modelling in the absence of data: a case study of fleet maintenance in a developing country," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 52(3), pages 247-260, March.
    17. Christer, A. H. & Lee, C., 2000. "Refining the delay-time-based PM inspection model with non-negligible system downtime estimates of the expected number of failures," International Journal of Production Economics, Elsevier, vol. 67(1), pages 77-85, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yang, Li & Ma, Xiaobing & Zhai, Qingqing & Zhao, Yu, 2016. "A delay time model for a mission-based system subject to periodic and random inspection and postponed replacement," Reliability Engineering and System Safety, Elsevier, vol. 150(C), pages 96-104.
    2. Wang, Jiantai & Longyan, Tan & Ma, Xiaobing & Gao, Kaiye & Jia, Heping & Yang, Li, 2023. "Prognosis-driven reliability analysis and replacement policy optimization for two-phase continuous degradation," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    3. Berrade, M.D. & Scarf, P.A. & Cavalcante, C.A.V., 2017. "A study of postponed replacement in a delay time model," Reliability Engineering and System Safety, Elsevier, vol. 168(C), pages 70-79.
    4. Zhang, Fengxia & Shen, Jingyuan & Liao, Haitao & Ma, Yizhong, 2021. "Optimal preventive maintenance policy for a system subject to two-phase imperfect inspections," Reliability Engineering and System Safety, Elsevier, vol. 205(C).
    5. Li Yang & Yu Zhao & Xiaobing Ma & Qingan Qiu, 2018. "An optimal inspection and replacement policy for a two-unit system," Journal of Risk and Reliability, , vol. 232(6), pages 766-776, December.
    6. Cavalcante, Cristiano A.V. & Lopes, Rodrigo S. & Scarf, Philip A., 2021. "Inspection and replacement policy with a fixed periodic schedule," Reliability Engineering and System Safety, Elsevier, vol. 208(C).
    7. de Jonge, Bram & Teunter, Ruud & Tinga, Tiedo, 2017. "The influence of practical factors on the benefits of condition-based maintenance over time-based maintenance," Reliability Engineering and System Safety, Elsevier, vol. 158(C), pages 21-30.
    8. van Staden, Heletjé E. & Deprez, Laurens & Boute, Robert N., 2022. "A dynamic “predict, then optimize” preventive maintenance approach using operational intervention data," European Journal of Operational Research, Elsevier, vol. 302(3), pages 1079-1096.
    9. Yang, Li & Ye, Zhi-sheng & Lee, Chi-Guhn & Yang, Su-fen & Peng, Rui, 2019. "A two-phase preventive maintenance policy considering imperfect repair and postponed replacement," European Journal of Operational Research, Elsevier, vol. 274(3), pages 966-977.
    10. Driessen, J.P.C. & Peng, H. & van Houtum, G.J., 2017. "Maintenance optimization under non-constant probabilities of imperfect inspections," Reliability Engineering and System Safety, Elsevier, vol. 165(C), pages 115-123.
    11. Scarf, P.A. & Cavalcante, C.A.V. & Lopes, R.S., 2019. "Delay-time modelling of a critical system subject to random inspections," European Journal of Operational Research, Elsevier, vol. 278(3), pages 772-782.
    12. Yang, Li & Ma, Xiaobing & Peng, Rui & Zhai, Qingqing & Zhao, Yu, 2017. "A preventive maintenance policy based on dependent two-stage deterioration and external shocks," Reliability Engineering and System Safety, Elsevier, vol. 160(C), pages 201-211.
    13. Alotaibi, Naif M. & Scarf, Philip & Cavalcante, Cristiano A.V. & Lopes, Rodrigo S. & de Oliveira e Silva, André Luiz & Rodrigues, Augusto J.S. & Alyami, Salem A., 2023. "Modified-opportunistic inspection and the case of remote, groundwater well-heads," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    14. Zhang, Zihan & Yang, Li, 2020. "Postponed maintenance scheduling integrating state variation and environmental impact," Reliability Engineering and System Safety, Elsevier, vol. 202(C).
    15. Akcay, Alp, 2022. "An alert-assisted inspection policy for a production process with imperfect condition signals," European Journal of Operational Research, Elsevier, vol. 298(2), pages 510-525.
    16. Wang, Jia & Han, Xu & Zhang, Yun-an & Bai, Guanghan, 2021. "Modeling the varying effects of shocks for a multi-stage degradation process," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    17. Wang, Jingjing & Yang, Li & Ma, Xiaobing & Peng, Rui, 2021. "Joint optimization of multi-window maintenance and spare part provisioning policies for production systems," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    18. de Jonge, Bram & Scarf, Philip A., 2020. "A review on maintenance optimization," European Journal of Operational Research, Elsevier, vol. 285(3), pages 805-824.
    19. Wang, Jiantai & Ma, Xiaobing & Yang, Li & Qiu, Qingan & Shang, Lijun & Wang, Jingjing, 2024. "A hybrid inspection-replacement policy for multi-stage degradation considering imperfect inspection with variable probabilities," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    20. Zhang, Fengxia & Shen, Jingyuan & Ma, Yizhong, 2020. "Optimal maintenance policy considering imperfect repairs and non-constant probabilities of inspection errors," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
    21. Andersen, Jesper Fink & Andersen, Anders Reenberg & Kulahci, Murat & Nielsen, Bo Friis, 2022. "A numerical study of Markov decision process algorithms for multi-component replacement problems," European Journal of Operational Research, Elsevier, vol. 299(3), pages 898-909.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Wenbin, 2012. "An overview of the recent advances in delay-time-based maintenance modelling," Reliability Engineering and System Safety, Elsevier, vol. 106(C), pages 165-178.
    2. Peng, Rui & Liu, Bin & Zhai, Qingqing & Wang, Wenbin, 2019. "Optimal maintenance strategy for systems with two failure modes," Reliability Engineering and System Safety, Elsevier, vol. 188(C), pages 624-632.
    3. Wang, Wenbin & Banjevic, Dragan & Pecht, Michael, 2010. "A multi-component and multi-failure mode inspection model based on the delay time concept," Reliability Engineering and System Safety, Elsevier, vol. 95(8), pages 912-920.
    4. Wang, Wenbin & Zhao, Fei & Peng, Rui, 2014. "A preventive maintenance model with a two-level inspection policy based on a three-stage failure process," Reliability Engineering and System Safety, Elsevier, vol. 121(C), pages 207-220.
    5. Wang, Wenbin, 2011. "An inspection model based on a three-stage failure process," Reliability Engineering and System Safety, Elsevier, vol. 96(7), pages 838-848.
    6. Wang, Wenbin & Banjevic, Dragan, 2012. "Ergodicity of forward times of the renewal process in a block-based inspection model using the delay time concept," Reliability Engineering and System Safety, Elsevier, vol. 100(C), pages 1-7.
    7. Rodrigues, Augusto J.S. & Cavalcante, Cristiano A.V. & Lee, Chi-Guhn, 2024. "A general inspection and replacement policy for protection systems subject to shocks with state dependent effect," Reliability Engineering and System Safety, Elsevier, vol. 251(C).
    8. Wang, Wenbin, 2013. "Models of inspection, routine service, and replacement for a serviceable one-component system," Reliability Engineering and System Safety, Elsevier, vol. 116(C), pages 57-63.
    9. Zhang, Fengxia & Shen, Jingyuan & Liao, Haitao & Ma, Yizhong, 2021. "Optimal preventive maintenance policy for a system subject to two-phase imperfect inspections," Reliability Engineering and System Safety, Elsevier, vol. 205(C).
    10. Xuejuan Liu & Wenbin Wang & Rui Peng & Fei Zhao, 2015. "A delay-time-based inspection model for parallel systems," Journal of Risk and Reliability, , vol. 229(6), pages 556-567, December.
    11. Flage, Roger, 2014. "A delay time model with imperfect and failure-inducing inspections," Reliability Engineering and System Safety, Elsevier, vol. 124(C), pages 1-12.
    12. Santos, Augusto César de Jesus & Cavalcante, Cristiano Alexandre Virgínio, 2022. "A study on the economic and environmental viability of second-hand items in maintenance policies," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    13. Alaswad, Suzan & Xiang, Yisha, 2017. "A review on condition-based maintenance optimization models for stochastically deteriorating system," Reliability Engineering and System Safety, Elsevier, vol. 157(C), pages 54-63.
    14. Wang, Wenbin & Syntetos, Aris A., 2011. "Spare parts demand: Linking forecasting to equipment maintenance," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 47(6), pages 1194-1209.
    15. Ruifeng Yang & Jianshe Kang, 2017. "Joint optimization for inspection and replacement model based on a three-stage failure process," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 8(1), pages 118-128, January.
    16. Wang, Wenbin, 2011. "A joint spare part and maintenance inspection optimisation model using the Delay-Time concept," Reliability Engineering and System Safety, Elsevier, vol. 96(11), pages 1535-1541.
    17. Mahesh D Pandey & Tianjin Cheng & JAM Van der Weide, 2016. "Higher moments and probability distribution of maintenance cost in the delay time model," Journal of Risk and Reliability, , vol. 230(4), pages 354-363, August.
    18. Wang, Wenbin, 2012. "A stochastic model for joint spare parts inventory and planned maintenance optimisation," European Journal of Operational Research, Elsevier, vol. 216(1), pages 127-139.
    19. Wang, Huiying & Wang, Wenbin & Peng, Rui, 2017. "A two-phase inspection model for a single component system with three-stage degradation," Reliability Engineering and System Safety, Elsevier, vol. 158(C), pages 31-40.
    20. Hui-Ying Wang & Zhao-Qiang Wang, 2022. "A condition-based preventive replacement policy with imperfect manual inspection for a two-stage deterioration process," Journal of Risk and Reliability, , vol. 236(2), pages 225-236, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:232:y:2014:i:1:p:186-197. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.