IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v214y2011i2p216-222.html
   My bibliography  Save this article

The performance evaluation of a multi-stage JIT production system with stochastic demand and production capacities

Author

Listed:
  • Iwase, Masaharu
  • Ohno, Katsuhisa

Abstract

This paper discusses a single-item, multi-stage, serial Just-in-Time (JIT) production system with stochastic demand and production capacities. The JIT production system is modeled as a discrete-time, M/G/1-type Markov chain. A necessary and sufficient condition, or a stability condition, under which the system has a steady-state distribution is derived. A performance evaluation algorithm is then developed using the matrix analytic methods. In numerical examples, the optimal numbers of kanbans are determined by the proposed algorithm. The optimal numbers of kanbans are robust for the variations in production capacity distribution and demand distribution.

Suggested Citation

  • Iwase, Masaharu & Ohno, Katsuhisa, 2011. "The performance evaluation of a multi-stage JIT production system with stochastic demand and production capacities," European Journal of Operational Research, Elsevier, vol. 214(2), pages 216-222, October.
  • Handle: RePEc:eee:ejores:v:214:y:2011:i:2:p:216-222
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221711003584
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Debasis Mitra & Isi Mitrani, 1990. "Analysis of a Kanban Discipline for Cell Coordination in Production Lines. I," Management Science, INFORMS, vol. 36(12), pages 1548-1566, December.
    2. Matta, Andrea & Dallery, Yves & Di Mascolo, Maria, 2005. "Analysis of assembly systems controlled with kanbans," European Journal of Operational Research, Elsevier, vol. 166(2), pages 310-336, October.
    3. Jean-Luc Deleersnyder & Thom J. Hodgson & Henri Muller-Malek & Peter J. O'Grady, 1989. "Kanban Controlled Pull Systems: An Analytic Approach," Management Science, INFORMS, vol. 35(9), pages 1079-1091, September.
    4. Debasis Mitra & Isi Mitrani, 1991. "Analysis of a Kanban Discipline for Cell Coordination in Production Lines, II: Stochastic Demands," Operations Research, INFORMS, vol. 39(5), pages 807-823, October.
    5. Maria Di Mascolo & Yannick Frein & Yves Dallery, 1996. "An Analytical Method for Performance Evaluation of Kanban Controlled Production Systems," Operations Research, INFORMS, vol. 44(1), pages 50-64, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sobhani, A. & Wahab, M.I.M. & Neumann, W.P., 2015. "Investigating work-related ill health effects in optimizing the performance of manufacturing systems," European Journal of Operational Research, Elsevier, vol. 241(3), pages 708-718.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhao Xiaobo & Qiguo Gong & Kenichi Nakashima, 2001. "Analysis of a production system in a general configuration," Naval Research Logistics (NRL), John Wiley & Sons, vol. 48(2), pages 128-143, March.
    2. Kim, Ilhyung & Tang, Christopher S., 1997. "Lead time and response time in a pull production control system," European Journal of Operational Research, Elsevier, vol. 101(3), pages 474-485, September.
    3. Cigdem Gurgur, 2013. "Optimal configuration of a decentralized, market-driven production/inventory system," Annals of Operations Research, Springer, vol. 209(1), pages 139-157, October.
    4. Houmin Yan & Xun Yu Zhou & G. Yin, 1999. "Approximating an Optimal Production Policy in a Continuous Flow Line: Recurrence and Asymptotic Properties," Operations Research, INFORMS, vol. 47(4), pages 535-549, August.
    5. Mark Vroblefski & R. Ramesh & Stanley Zionts, 2000. "General Open and Closed Queueing Networks with Blocking: A Unified Framework for Approximation," INFORMS Journal on Computing, INFORMS, vol. 12(4), pages 299-316, November.
    6. Ou, Jihong & Jiang, Jiong, 1997. "Yield comparison of push and pull control methods on production systems with unreliable machines," International Journal of Production Economics, Elsevier, vol. 50(1), pages 1-12, May.
    7. Cigdem Z. Gurgur & Tayfur Altiok, 2007. "Analysis of decentralized multi‐product pull systems with lost sales," Naval Research Logistics (NRL), John Wiley & Sons, vol. 54(4), pages 357-370, June.
    8. Mascolo, Maria Di, 1996. "Analysis of a synchronization station for the performance evaluation of a kanban system with a general arrival process of demands," European Journal of Operational Research, Elsevier, vol. 89(1), pages 147-163, February.
    9. Kojima, Mitsutoshi & Nakashima, Kenichi & Ohno, Katsuhisa, 2008. "Performance evaluation of SCM in JIT environment," International Journal of Production Economics, Elsevier, vol. 115(2), pages 439-443, October.
    10. Wilhelm, W. E. & Som, Pradip, 1998. "Analysis of a single-stage, single-product, stochastic, MRP-controlled assembly system," European Journal of Operational Research, Elsevier, vol. 108(1), pages 74-93, July.
    11. Zipkin, Paul, 1995. "Processing networks with planned inventories: Tandem queues with feedback," European Journal of Operational Research, Elsevier, vol. 80(2), pages 344-349, January.
    12. Engin Topan & Zeynep Avṣar, 2011. "An approximation for kanban controlled assembly systems," Annals of Operations Research, Springer, vol. 182(1), pages 133-162, January.
    13. Papadopoulos, H. T. & Heavey, C., 1996. "Queueing theory in manufacturing systems analysis and design: A classification of models for production and transfer lines," European Journal of Operational Research, Elsevier, vol. 92(1), pages 1-27, July.
    14. Askin, Ronald G. & Krishnan, Shravan, 2009. "Defining inventory control points in multiproduct stochastic pull systems," International Journal of Production Economics, Elsevier, vol. 120(2), pages 418-429, August.
    15. Huang, Min & Wang, Dingwei & Ip, W. H., 1998. "Simulation study of CONWIP for a cold rolling plant," International Journal of Production Economics, Elsevier, vol. 54(3), pages 257-266, May.
    16. Albino, Vito & Dassisti, Michele & O. Okogbaa, Geoffrey, 1995. "Approximation approach for the performance analysis of production lines under a kanban discipline," International Journal of Production Economics, Elsevier, vol. 40(2-3), pages 197-207, August.
    17. Andijani, A. A., 1998. "A multi-criterion approach for Kanban allocations," Omega, Elsevier, vol. 26(4), pages 483-493, August.
    18. Subba Rao, S. & Gunasekaran, A. & Goyal, S. K. & Martikainen, T., 1998. "Waiting line model applications in manufacturing," International Journal of Production Economics, Elsevier, vol. 54(1), pages 1-28, January.
    19. Yonit Barron, 2023. "The Delay Time Profile of Multistage Networks with Synchronization," Mathematics, MDPI, vol. 11(14), pages 1-30, July.
    20. Tardif, Valerie & Maaseidvaag, Lars, 2001. "An adaptive approach to controlling kanban systems," European Journal of Operational Research, Elsevier, vol. 132(2), pages 411-424, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:214:y:2011:i:2:p:216-222. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.