IDEAS home Printed from
   My bibliography  Save this article

Functional ANOVA, ultramodularity and monotonicity: Applications in multiattribute utility theory


  • Beccacece, F.
  • Borgonovo, E.


Utility function properties as monotonicity and concavity play a fundamental role in reflecting a decision-maker's preference structure. These properties are usually characterized via partial derivatives. However, elicitation methods do not necessarily lead to twice-differentiable utility functions. Furthermore, while in a single-attribute context concavity fully reflects risk aversion, in multiattribute problems such correspondence is not one-to-one. We show that Tsetlin and Winkler's multivariate risk attitudes imply ultramodularity of the utility function. We demonstrate that geometric properties of a multivariate utility function can be successfully studied by utilizing an integral function expansion (functional ANOVA). The necessary and sufficient conditions under which monotonicity and/or ultramodularity of single-attribute functions imply the monotonicity and/or ultramodularity of the corresponding multiattribute function under additive, preferential and mutual utility independence are then established without reliance on the utility function differentiability. We also investigate the relationship between the presence of interactions among the attributes of a multiattribute utility function and the decision-maker's multivariate risk attitudes.

Suggested Citation

  • Beccacece, F. & Borgonovo, E., 2011. "Functional ANOVA, ultramodularity and monotonicity: Applications in multiattribute utility theory," European Journal of Operational Research, Elsevier, vol. 210(2), pages 326-335, April.
  • Handle: RePEc:eee:ejores:v:210:y:2011:i:2:p:326-335

    Download full text from publisher

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. András Prékopa & Gergely Mádi-Nagy, 2008. "A class of multiattribute utility functions," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 34(3), pages 591-602, March.
    2. Robin M. Hogarth & Natalia Karelaia, 2005. "Simple Models for Multiattribute Choice with Many Alternatives: When It Does and Does Not Pay to Face Trade-offs with Binary Attributes," Management Science, INFORMS, vol. 51(12), pages 1860-1872, December.
    3. Keeney,Ralph L. & Raiffa,Howard, 1993. "Decisions with Multiple Objectives," Cambridge Books, Cambridge University Press, number 9780521438834.
    4. Milgrom, Paul & Shannon, Chris, 1994. "Monotone Comparative Statics," Econometrica, Econometric Society, vol. 62(1), pages 157-180, January.
    5. Ilia Tsetlin & Robert L. Winkler, 2009. "Multiattribute Utility Satisfying a Preference for Combining Good with Bad," Management Science, INFORMS, vol. 55(12), pages 1942-1952, December.
    6. Zopounidis, Constantin & Doumpos, Michael, 2002. "Multicriteria classification and sorting methods: A literature review," European Journal of Operational Research, Elsevier, vol. 138(2), pages 229-246, April.
    7. Sobol′ , I.M, 2001. "Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 55(1), pages 271-280.
    8. Angilella, Silvia & Greco, Salvatore & Matarazzo, Benedetto, 2010. "Non-additive robust ordinal regression: A multiple criteria decision model based on the Choquet integral," European Journal of Operational Research, Elsevier, vol. 201(1), pages 277-288, February.
    9. Massimo Marinacci & Luigi Montrucchio, 2005. "Ultramodular Functions," Mathematics of Operations Research, INFORMS, vol. 30(2), pages 311-332, May.
    10. Sobol’, I.M. & Tarantola, S. & Gatelli, D. & Kucherenko, S.S. & Mauntz, W., 2007. "Estimating the approximation error when fixing unessential factors in global sensitivity analysis," Reliability Engineering and System Safety, Elsevier, vol. 92(7), pages 957-960.
    11. Fortemps, Philippe & Greco, Salvatore & Slowinski, Roman, 2008. "Multicriteria decision support using rules that represent rough-graded preference relations," European Journal of Operational Research, Elsevier, vol. 188(1), pages 206-223, July.
    12. Ortega, Eva-María & Escudero, Laureano F., 2010. "On expected utility for financial insurance portfolios with stochastic dependencies," European Journal of Operational Research, Elsevier, vol. 200(1), pages 181-186, January.
    13. Borgonovo, E., 2010. "Sensitivity analysis with finite changes: An application to modified EOQ models," European Journal of Operational Research, Elsevier, vol. 200(1), pages 127-138, January.
    14. Scott F. Richard, 1975. "Multivariate Risk Aversion, Utility Independence and Separable Utility Functions," Management Science, INFORMS, vol. 22(1), pages 12-21, September.
    15. Angilella, Silvia & Greco, Salvatore & Lamantia, Fabio & Matarazzo, Benedetto, 2004. "Assessing non-additive utility for multicriteria decision aid," European Journal of Operational Research, Elsevier, vol. 158(3), pages 734-744, November.
    16. Figueira, José Rui & Greco, Salvatore & Slowinski, Roman, 2009. "Building a set of additive value functions representing a reference preorder and intensities of preference: GRIP method," European Journal of Operational Research, Elsevier, vol. 195(2), pages 460-486, June.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Bosetti, Valentina & Marangoni, Giacomo & Borgonovo, Emanuele & Diaz Anadon, Laura & Barron, Robert & McJeon, Haewon C. & Politis, Savvas & Friley, Paul, 2015. "Sensitivity to energy technology costs: A multi-model comparison analysis," Energy Policy, Elsevier, vol. 80(C), pages 244-263.
    2. Beccacece, Francesca & Borgonovo, Emanuele & Buzzard, Greg & Cillo, Alessandra & Zionts, Stanley, 2015. "Elicitation of multiattribute value functions through high dimensional model representations: Monotonicity and interactions," European Journal of Operational Research, Elsevier, vol. 246(2), pages 517-527.
    3. Borgonovo, Emanuele & Plischke, Elmar, 2016. "Sensitivity analysis: A review of recent advances," European Journal of Operational Research, Elsevier, vol. 248(3), pages 869-887.
    4. Francesca Beccacece & Emanuele Borgonovo & Greg Buzzard & Alessandra Cillo & Stanley Zionts, 2013. "Elicitation of Multiattribute Value Functions through High Dimensional Model Representations," Working Papers 495, IGIER (Innocenzo Gasparini Institute for Economic Research), Bocconi University.


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:210:y:2011:i:2:p:326-335. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Haili He). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.