IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v202y2010i3p773-780.html

Processing games with restricted capacities

Author

Listed:
  • Reijnierse, Hans
  • Borm, Peter
  • Quant, Marieke
  • Meertens, Marc

Abstract

This paper analyzes processing problems and related cooperative games. In a processing problem there is a finite set of jobs, each requiring a specific amount of effort to be completed, whose costs depend linearly on their completion times. The main feature of the model is a capacity restriction, i.e., there is a maximum amount of effort per time unit available for handling jobs. There are no other restrictions whatsoever on the processing schedule. Assigning to each job a player and letting each player have an individual capacity for handling jobs, each coalition of cooperating players in fact faces a processing problem with the coalitional capacity being the sum of the individual capacities of the members. The corresponding processing game summarizes the minimal joint costs for every coalition. It turns out that processing games are totally balanced. The proof of this statement is constructive and provides a core element in polynomial time.

Suggested Citation

  • Reijnierse, Hans & Borm, Peter & Quant, Marieke & Meertens, Marc, 2010. "Processing games with restricted capacities," European Journal of Operational Research, Elsevier, vol. 202(3), pages 773-780, May.
  • Handle: RePEc:eee:ejores:v:202:y:2010:i:3:p:773-780
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377-2217(09)00450-0
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or

    for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Marieke Quant & Marc Meertens & Hans Reijnierse, 2008. "Processing games with shared interest," Annals of Operations Research, Springer, vol. 158(1), pages 219-228, February.
    2. Peter Borm & Herbert Hamers & Ruud Hendrickx, 2001. "Operations research games: A survey," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 9(2), pages 139-199, December.
    3. Maniquet, Francois, 2003. "A characterization of the Shapley value in queueing problems," Journal of Economic Theory, Elsevier, vol. 109(1), pages 90-103, March.
    4. Curiel, I. & Pederzoli, G. & Tijs, S.H., 1989. "Sequencing games," Other publications TiSEM cd695be5-0f54-4548-a952-2, Tilburg University, School of Economics and Management.
    5. Wayne E. Smith, 1956. "Various optimizers for single‐stage production," Naval Research Logistics Quarterly, John Wiley & Sons, vol. 3(1‐2), pages 59-66, March.
    6. Legut, J. & Potters, J.A.M. & Tijs, S.H., 1994. "Economies with land : A game theoretical approach," Other publications TiSEM 37ff121d-d79c-4e41-a06a-9, Tilburg University, School of Economics and Management.
    7. Curiel, Imma & Pederzoli, Giorgio & Tijs, Stef, 1989. "Sequencing games," European Journal of Operational Research, Elsevier, vol. 40(3), pages 344-351, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. is not listed on IDEAS
    2. Marieke Quant & Marc Meertens & Hans Reijnierse, 2008. "Processing games with shared interest," Annals of Operations Research, Springer, vol. 158(1), pages 219-228, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Youngsub Chun & Manipushpak Mitra & Suresh Mutuswami, 2017. "Reordering an existing queue," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 49(1), pages 65-87, June.
    2. René Brink & Yukihiko Funaki & Yuan Ju, 2013. "Reconciling marginalism with egalitarianism: consistency, monotonicity, and implementation of egalitarian Shapley values," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 40(3), pages 693-714, March.
    3. S. Alparslan-Gök & R. Branzei & V. Fragnelli & S. Tijs, 2013. "Sequencing interval situations and related games," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 21(1), pages 225-236, January.
    4. Moulin, Herve, 2005. "Split-Proof Probabilistic Scheduling," Working Papers 2004-06, Rice University, Department of Economics.
    5. René Brink & Youngsub Chun, 2012. "Balanced consistency and balanced cost reduction for sequencing problems," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 38(3), pages 519-529, March.
    6. Fragnelli, V. & Llorca, N. & Sánchez-Soriano, J. & Tijs, S.H., 2006. "Convex Games with Countable Number of Players and Sequencing Situations," Other publications TiSEM 1140b489-9c79-4920-9dea-6, Tilburg University, School of Economics and Management.
    7. Hamers, H.J.M. & Miquel, S. & Norde, H.W., 2011. "Monotonic Stable Solutions for Minimum Coloring Games," Discussion Paper 2011-016, Tilburg University, Center for Economic Research.
    8. Moulin, Herve, 2004. "On Scheduling Fees to Prevent Merging, Splitting and Transferring of Jobs," Working Papers 2004-04, Rice University, Department of Economics.
    9. Çiftçi, BarIs & Borm, Peter & Hamers, Herbert, 2010. "Highway games on weakly cyclic graphs," European Journal of Operational Research, Elsevier, vol. 204(1), pages 117-124, July.
    10. M. Álvarez-Mozos & R. Brink & G. Laan & O. Tejada, 2017. "From hierarchies to levels: new solutions for games with hierarchical structure," International Journal of Game Theory, Springer;Game Theory Society, vol. 46(4), pages 1089-1113, November.
    11. Yossi Bukchin & Eran Hanany, 2007. "Decentralization Cost in Scheduling: A Game-Theoretic Approach," Manufacturing & Service Operations Management, INFORMS, vol. 9(3), pages 263-275, October.
    12. Debasis Mishra & Bharath Rangarajan, 2007. "Cost sharing in a job scheduling problem," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 29(3), pages 369-382, October.
    13. René van den Brink & Gerard van der Laan & Valeri Vasil'ev, 0000. "The Restricted Core for Totally Positive Games with Ordered Players," Tinbergen Institute Discussion Papers 09-038/1, Tinbergen Institute.
    14. Ruud Hendrickx & Jacco Thijssen & Peter Borm, 2012. "Minimum cost spanning tree games and spillover stability," Theory and Decision, Springer, vol. 73(3), pages 441-451, September.
    15. René Brink & René Levínský & Miroslav Zelený, 2015. "On proper Shapley values for monotone TU-games," International Journal of Game Theory, Springer;Game Theory Society, vol. 44(2), pages 449-471, May.
    16. Mikel Álvarez-Mozos & René van den Brink & Gerard van der Laan & Oriol Tejada, 2015. "From Hierarchies to Levels: New Solutions for Games," Tinbergen Institute Discussion Papers 15-072/II, Tinbergen Institute.
    17. De, Parikshit, 2013. "Incentive and normative analysis on sequencing problem," MPRA Paper 55127, University Library of Munich, Germany.
    18. René Brink & Gerard Laan & Valeri Vasil’ev, 2014. "Constrained core solutions for totally positive games with ordered players," International Journal of Game Theory, Springer;Game Theory Society, vol. 43(2), pages 351-368, May.
    19. Chun, Youngsub, 2006. "A pessimistic approach to the queueing problem," Mathematical Social Sciences, Elsevier, vol. 51(2), pages 171-181, March.
    20. Chun, Youngsub & Mitra, Manipushpak, 2014. "Subgroup additivity in the queueing problem," European Journal of Operational Research, Elsevier, vol. 238(1), pages 281-289.

    More about this item

    Keywords

    ;

    JEL classification:

    • C63 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computational Techniques
    • C71 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Cooperative Games

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:202:y:2010:i:3:p:773-780. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.