IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v201y2010i2p593-600.html
   My bibliography  Save this article

An interactive GRAMPS algorithm for the heterogeneous fixed fleet vehicle routing problem with and without backhauls

Author

Listed:
  • Tütüncü, G. YazgI

Abstract

In this article, a visual interactive approach based on a new greedy randomised adaptive memory programming search (GRAMPS) algorithm is proposed to solve the heterogeneous fixed fleet vehicle routing problem (HFFVRP) and a new extension of the HFFVRP, which is called heterogeneous fixed fleet vehicle routing problem with backhauls (HFFVRPB). This problem involves two different sets of customers. Backhaul customers are pickup points and linehaul customers are delivery points that are to be serviced from a single depot by a heterogeneous fixed fleet of vehicles, each of which is restricted in the capacity it can carry, with different variable travelling costs. The proposed approach is implemented within a visual decision support system, which was developed to allow users to produce and judge alternative decisions by using their knowledge and experience about the requirements of the HFFVRP. The computational results are provided on classical problem instances for HFFVRP and a new best-known solution has been reported. A new set of problem instances for HFFVRPB is proposed. The results show that the proposed approach can find high quality solutions in very short time and the system is able to create alternative solutions in order to satisfy the user's expectations.

Suggested Citation

  • Tütüncü, G. YazgI, 2010. "An interactive GRAMPS algorithm for the heterogeneous fixed fleet vehicle routing problem with and without backhauls," European Journal of Operational Research, Elsevier, vol. 201(2), pages 593-600, March.
  • Handle: RePEc:eee:ejores:v:201:y:2010:i:2:p:593-600
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377-2217(09)00195-7
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Charles Fleurent & Fred Glover, 1999. "Improved Constructive Multistart Strategies for the Quadratic Assignment Problem Using Adaptive Memory," INFORMS Journal on Computing, INFORMS, vol. 11(2), pages 198-204, May.
    2. G.Y. Tütüncü & B.M. Carreto Baker, 2009. "A visual interactive approach to the classical and mixed vehicle routing problems with backhauls," Post-Print hal-00581628, HAL.
    3. Toth, Paolo & Vigo, Daniele, 1999. "A heuristic algorithm for the symmetric and asymmetric vehicle routing problems with backhauls," European Journal of Operational Research, Elsevier, vol. 113(3), pages 528-543, March.
    4. Tarantilis, C. D. & Kiranoudis, C. T. & Vassiliadis, V. S., 2004. "A threshold accepting metaheuristic for the heterogeneous fixed fleet vehicle routing problem," European Journal of Operational Research, Elsevier, vol. 152(1), pages 148-158, January.
    5. Ahmadi, Samad & Osman, Ibrahim H., 2005. "Greedy random adaptive memory programming search for the capacitated clustering problem," European Journal of Operational Research, Elsevier, vol. 162(1), pages 30-44, April.
    6. YazgI Tütüncü, G. & Carreto, Carlos A.C. & Baker, Barrie M., 2009. "A visual interactive approach to classical and mixed vehicle routing problems with backhauls," Omega, Elsevier, vol. 37(1), pages 138-154, February.
    7. C D Tarantilis & C T Kiranoudis & V S Vassiliadis, 2003. "A list based threshold accepting metaheuristic for the heterogeneous fixed fleet vehicle routing problem," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 54(1), pages 65-71, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. YazgI Tütüncü, G. & Carreto, Carlos A.C. & Baker, Barrie M., 2009. "A visual interactive approach to classical and mixed vehicle routing problems with backhauls," Omega, Elsevier, vol. 37(1), pages 138-154, February.
    2. Maria João Santos & Pedro Amorim & Alexandra Marques & Ana Carvalho & Ana Póvoa, 2020. "The vehicle routing problem with backhauls towards a sustainability perspective: a review," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(2), pages 358-401, July.
    3. Fatih Kocatürk & G. Yazgı Tütüncü & Said Salhi, 2021. "The multi-depot heterogeneous VRP with backhauls: formulation and a hybrid VNS with GRAMPS meta-heuristic approach," Annals of Operations Research, Springer, vol. 307(1), pages 277-302, December.
    4. Ma, Li-Ching, 2012. "Screening alternatives graphically by an extended case-based distance approach," Omega, Elsevier, vol. 40(1), pages 96-103, January.
    5. Marques, Alexandra & Soares, Ricardo & Santos, Maria João & Amorim, Pedro, 2020. "Integrated planning of inbound and outbound logistics with a Rich Vehicle Routing Problem with backhauls," Omega, Elsevier, vol. 92(C).
    6. C. Y. Lam, 2021. "Optimizing logistics routings in a network perspective of supply and demand nodes," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 29(1), pages 357-377, March.
    7. Wang, Hsiao-Fan & Chen, Ying-Yen, 2013. "A coevolutionary algorithm for the flexible delivery and pickup problem with time windows," International Journal of Production Economics, Elsevier, vol. 141(1), pages 4-13.
    8. Liu, Shuguang, 2013. "A hybrid population heuristic for the heterogeneous vehicle routing problems," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 54(C), pages 67-78.
    9. Subramanian, Anand & Penna, Puca Huachi Vaz & Uchoa, Eduardo & Ochi, Luiz Satoru, 2012. "A hybrid algorithm for the Heterogeneous Fleet Vehicle Routing Problem," European Journal of Operational Research, Elsevier, vol. 221(2), pages 285-295.
    10. C D Tarantilis & E E Zachariadis & C T Kiranoudis, 2008. "A guided tabu search for the heterogeneous vehicle routeing problem," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 59(12), pages 1659-1673, December.
    11. Imran, Arif & Salhi, Said & Wassan, Niaz A., 2009. "A variable neighborhood-based heuristic for the heterogeneous fleet vehicle routing problem," European Journal of Operational Research, Elsevier, vol. 197(2), pages 509-518, September.
    12. Houda Derbel & Bassem Jarboui & Rim Bhiri, 2019. "A skewed general variable neighborhood search algorithm with fixed threshold for the heterogeneous fleet vehicle routing problem," Annals of Operations Research, Springer, vol. 272(1), pages 243-272, January.
    13. Gribkovskaia, Irina & Halskau, Oyvind & Kovalyov, Mikhail Y., 2015. "Minimizing takeoff and landing risk in helicopter pickup and delivery operations," Omega, Elsevier, vol. 55(C), pages 73-80.
    14. Adlakha, Veena & Kowalski, Krzysztof & Lev, Benjamin, 2010. "A branching method for the fixed charge transportation problem," Omega, Elsevier, vol. 38(5), pages 393-397, October.
    15. Lai, David S.W. & Caliskan Demirag, Ozgun & Leung, Janny M.Y., 2016. "A tabu search heuristic for the heterogeneous vehicle routing problem on a multigraph," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 86(C), pages 32-52.
    16. Santos, Maria João & Curcio, Eduardo & Mulati, Mauro Henrique & Amorim, Pedro & Miyazawa, Flávio Keidi, 2020. "A robust optimization approach for the vehicle routing problem with selective backhauls," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 136(C).
    17. Boctor, Fayez F. & Renaud, Jacques & Cornillier, Fabien, 2011. "Trip packing in petrol stations replenishment," Omega, Elsevier, vol. 39(1), pages 86-98, January.
    18. Puca Huachi Vaz Penna & Anand Subramanian & Luiz Satoru Ochi & Thibaut Vidal & Christian Prins, 2019. "A hybrid heuristic for a broad class of vehicle routing problems with heterogeneous fleet," Annals of Operations Research, Springer, vol. 273(1), pages 5-74, February.
    19. Tarantilis, C.D. & Kiranoudis, C.T., 2007. "A flexible adaptive memory-based algorithm for real-life transportation operations: Two case studies from dairy and construction sector," European Journal of Operational Research, Elsevier, vol. 179(3), pages 806-822, June.
    20. Lahyani, Rahma & Khemakhem, Mahdi & Semet, Frédéric, 2015. "Rich vehicle routing problems: From a taxonomy to a definition," European Journal of Operational Research, Elsevier, vol. 241(1), pages 1-14.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:201:y:2010:i:2:p:593-600. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.