IDEAS home Printed from https://ideas.repec.org/a/pal/jorsoc/v59y2008i12d10.1057_palgrave.jors.2602504.html
   My bibliography  Save this article

A guided tabu search for the heterogeneous vehicle routeing problem

Author

Listed:
  • C D Tarantilis

    (Athens University of Economics and Business)

  • E E Zachariadis

    (National Technical University of Athens)

  • C T Kiranoudis

    (National Technical University of Athens)

Abstract

The aim of this paper is to present a new algorithmic methodology for the heterogeneous fixed fleet vehicle routeing problem (HFFVRP). HFFVRP consists of determining the minimum cost routes for a fleet of vehicles in order to satisfy the demand of the customer population. The fleet composition is fixed and consists of various types of vehicles that differ with respect to their maximum carrying load and variable cost per distance unit. Our proposed algorithm called guided tabu search (GTS) is based on tabu search controlled by a continuous guiding mechanism that modifies the objective function of the problem. The role of this guiding strategy is to diversify the conducted search and help it overcome local optima encountered. The GTS method was applied successfully on HFFVRP benchmark problems producing best-known and new best-known solutions in short computational times.

Suggested Citation

  • C D Tarantilis & E E Zachariadis & C T Kiranoudis, 2008. "A guided tabu search for the heterogeneous vehicle routeing problem," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 59(12), pages 1659-1673, December.
  • Handle: RePEc:pal:jorsoc:v:59:y:2008:i:12:d:10.1057_palgrave.jors.2602504
    DOI: 10.1057/palgrave.jors.2602504
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1057/palgrave.jors.2602504
    File Function: Abstract
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1057/palgrave.jors.2602504?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. C D Tarantilis & C T Kiranoudis & V S Vassiliadis, 2003. "A list based threshold accepting metaheuristic for the heterogeneous fixed fleet vehicle routing problem," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 54(1), pages 65-71, January.
    2. C.D. Tarantilis & C.T. Kiranoudis, 2002. "BoneRoute: An Adaptive Memory-Based Method for Effective Fleet Management," Annals of Operations Research, Springer, vol. 115(1), pages 227-241, September.
    3. G. A. Croes, 1958. "A Method for Solving Traveling-Salesman Problems," Operations Research, INFORMS, vol. 6(6), pages 791-812, December.
    4. Tarantilis, C. D. & Kiranoudis, C. T. & Vassiliadis, V. S., 2004. "A threshold accepting metaheuristic for the heterogeneous fixed fleet vehicle routing problem," European Journal of Operational Research, Elsevier, vol. 152(1), pages 148-158, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tarantilis, C.D. & Kiranoudis, C.T., 2007. "A flexible adaptive memory-based algorithm for real-life transportation operations: Two case studies from dairy and construction sector," European Journal of Operational Research, Elsevier, vol. 179(3), pages 806-822, June.
    2. Subramanian, Anand & Penna, Puca Huachi Vaz & Uchoa, Eduardo & Ochi, Luiz Satoru, 2012. "A hybrid algorithm for the Heterogeneous Fleet Vehicle Routing Problem," European Journal of Operational Research, Elsevier, vol. 221(2), pages 285-295.
    3. Liu, Shuguang, 2013. "A hybrid population heuristic for the heterogeneous vehicle routing problems," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 54(C), pages 67-78.
    4. Tütüncü, G. YazgI, 2010. "An interactive GRAMPS algorithm for the heterogeneous fixed fleet vehicle routing problem with and without backhauls," European Journal of Operational Research, Elsevier, vol. 201(2), pages 593-600, March.
    5. Imran, Arif & Salhi, Said & Wassan, Niaz A., 2009. "A variable neighborhood-based heuristic for the heterogeneous fleet vehicle routing problem," European Journal of Operational Research, Elsevier, vol. 197(2), pages 509-518, September.
    6. Houda Derbel & Bassem Jarboui & Rim Bhiri, 2019. "A skewed general variable neighborhood search algorithm with fixed threshold for the heterogeneous fleet vehicle routing problem," Annals of Operations Research, Springer, vol. 272(1), pages 243-272, January.
    7. Lai, David S.W. & Caliskan Demirag, Ozgun & Leung, Janny M.Y., 2016. "A tabu search heuristic for the heterogeneous vehicle routing problem on a multigraph," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 86(C), pages 32-52.
    8. Leung, Stephen C.H. & Zhang, Zhenzhen & Zhang, Defu & Hua, Xian & Lim, Ming K., 2013. "A meta-heuristic algorithm for heterogeneous fleet vehicle routing problems with two-dimensional loading constraints," European Journal of Operational Research, Elsevier, vol. 225(2), pages 199-210.
    9. Xiaodan Wu & Ruichang Li & Chao-Hsien Chu & Richard Amoasi & Shan Liu, 2022. "Managing pharmaceuticals delivery service using a hybrid particle swarm intelligence approach," Annals of Operations Research, Springer, vol. 308(1), pages 653-684, January.
    10. C D Tarantilis & G Ioannou & C T Kiranoudis & G P Prastacos, 2005. "Solving the open vehicle routeing problem via a single parameter metaheuristic algorithm," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 56(5), pages 588-596, May.
    11. Puca Huachi Vaz Penna & Anand Subramanian & Luiz Satoru Ochi & Thibaut Vidal & Christian Prins, 2019. "A hybrid heuristic for a broad class of vehicle routing problems with heterogeneous fleet," Annals of Operations Research, Springer, vol. 273(1), pages 5-74, February.
    12. Lahyani, Rahma & Khemakhem, Mahdi & Semet, Frédéric, 2015. "Rich vehicle routing problems: From a taxonomy to a definition," European Journal of Operational Research, Elsevier, vol. 241(1), pages 1-14.
    13. Koç, Çağrı & Bektaş, Tolga & Jabali, Ola & Laporte, Gilbert, 2016. "Thirty years of heterogeneous vehicle routing," European Journal of Operational Research, Elsevier, vol. 249(1), pages 1-21.
    14. Nair, D.J. & Grzybowska, H. & Fu, Y. & Dixit, V.V., 2018. "Scheduling and routing models for food rescue and delivery operations," Socio-Economic Planning Sciences, Elsevier, vol. 63(C), pages 18-32.
    15. Pan-Li Zhang & Xiao-Bo Sun & Ji-Quan Wang & Hao-Hao Song & Jin-Ling Bei & Hong-Yu Zhang, 2022. "The Discrete Carnivorous Plant Algorithm with Similarity Elimination Applied to the Traveling Salesman Problem," Mathematics, MDPI, vol. 10(18), pages 1-34, September.
    16. Arthur Charpentier & Romuald Élie & Carl Remlinger, 2023. "Reinforcement Learning in Economics and Finance," Computational Economics, Springer;Society for Computational Economics, vol. 62(1), pages 425-462, June.
    17. Racha El-Hajj & Rym Nesrine Guibadj & Aziz Moukrim & Mehdi Serairi, 2020. "A PSO based algorithm with an efficient optimal split procedure for the multiperiod vehicle routing problem with profit," Annals of Operations Research, Springer, vol. 291(1), pages 281-316, August.
    18. CASTRO, Marco & SÖRENSEN, Kenneth & VANSTEENWEGEN, Pieter & GOOS, Peter, 2012. "A simple GRASP+VND for the travelling salesperson problem with hotel selection," Working Papers 2012024, University of Antwerp, Faculty of Business and Economics.
    19. Eric Bonabeau & Florian Henaux & Sylvain Gu'erin & Dominique Snyers & Pascale Kuntz & Guy Theraulaz, 1998. "Routing in Telecommunications Networks with ``Smart'' Ant-Like Agents," Working Papers 98-01-003, Santa Fe Institute.
    20. A A Juan & J Faulin & J Jorba & D Riera & D Masip & B Barrios, 2011. "On the use of Monte Carlo simulation, cache and splitting techniques to improve the Clarke and Wright savings heuristics," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(6), pages 1085-1097, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pal:jorsoc:v:59:y:2008:i:12:d:10.1057_palgrave.jors.2602504. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.palgrave-journals.com/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.