IDEAS home Printed from https://ideas.repec.org/a/pal/jorsoc/v55y2004i7d10.1057_palgrave.jors.2601770.html
   My bibliography  Save this article

Local search for Hamiltonian Path with applications to clustering visitation paths

Author

Listed:
  • R Torres-Velázquez

    (PHI Investigación Operativa para la alta Dirección de Empresas SA de CV, Av. Acoxpa 524-506A, Col. Prados Coapa)

  • V Estivill-Castro

    (Griffith University)

Abstract

Clustering a data array has been found useful in the design of web-sites and distributed database system. We show that a critical step during this clustering process is related to solving the Longest Hamiltonian Path Problem, a well known NP-complete problem. Using the grouping of visitation paths of web-users as a case study, we test several heuristic algorithms. As a result of our experiments, we identify a successful method for dealing with this problem. Our algorithm spends less CPU time and provides better quality solutions than the most recent approach.

Suggested Citation

  • R Torres-Velázquez & V Estivill-Castro, 2004. "Local search for Hamiltonian Path with applications to clustering visitation paths," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 55(7), pages 737-748, July.
  • Handle: RePEc:pal:jorsoc:v:55:y:2004:i:7:d:10.1057_palgrave.jors.2601770
    DOI: 10.1057/palgrave.jors.2601770
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1057/palgrave.jors.2601770
    File Function: Abstract
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1057/palgrave.jors.2601770?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. S Lozano & B Adenso-Díaz & I Eguia & L Onieva, 1999. "A one-step tabu search algorithm for manufacturing cell design," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 50(5), pages 509-516, May.
    2. S. Lin & B. W. Kernighan, 1973. "An Effective Heuristic Algorithm for the Traveling-Salesman Problem," Operations Research, INFORMS, vol. 21(2), pages 498-516, April.
    3. G. A. Croes, 1958. "A Method for Solving Traveling-Salesman Problems," Operations Research, INFORMS, vol. 6(6), pages 791-812, December.
    4. William T. McCormick & Paul J. Schweitzer & Thomas W. White, 1972. "Problem Decomposition and Data Reorganization by a Clustering Technique," Operations Research, INFORMS, vol. 20(5), pages 993-1009, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. R Bhatnagar & V Saddikuti, 2010. "Models for cellular manufacturing systems design: matching processing requirements and operator capabilities," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 61(5), pages 827-839, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pan-Li Zhang & Xiao-Bo Sun & Ji-Quan Wang & Hao-Hao Song & Jin-Ling Bei & Hong-Yu Zhang, 2022. "The Discrete Carnivorous Plant Algorithm with Similarity Elimination Applied to the Traveling Salesman Problem," Mathematics, MDPI, vol. 10(18), pages 1-34, September.
    2. Luc Muyldermans & Patrick Beullens & Dirk Cattrysse & Dirk Van Oudheusden, 2005. "Exploring Variants of 2-Opt and 3-Opt for the General Routing Problem," Operations Research, INFORMS, vol. 53(6), pages 982-995, December.
    3. N. A. Arellano-Arriaga & J. Molina & S. E. Schaeffer & A. M. Álvarez-Socarrás & I. A. Martínez-Salazar, 2019. "A bi-objective study of the minimum latency problem," Journal of Heuristics, Springer, vol. 25(3), pages 431-454, June.
    4. Sandra Zajac, 2018. "On a two-phase solution approach for the bi-objective k-dissimilar vehicle routing problem," Journal of Heuristics, Springer, vol. 24(3), pages 515-550, June.
    5. Haitao Xu & Pan Pu & Feng Duan, 2018. "Dynamic Vehicle Routing Problems with Enhanced Ant Colony Optimization," Discrete Dynamics in Nature and Society, Hindawi, vol. 2018, pages 1-13, February.
    6. G Babin & S Deneault & G Laporte, 2007. "Improvements to the Or-opt heuristic for the symmetric travelling salesman problem," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 58(3), pages 402-407, March.
    7. L Zeng & H L Ong & K M Ng, 2007. "A generalized crossing local search method for solving vehicle routing problems," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 58(4), pages 528-532, April.
    8. repec:jss:jstsof:23:i02 is not listed on IDEAS
    9. repec:jss:jstsof:25:i03 is not listed on IDEAS
    10. Voudouris, Christos & Tsang, Edward, 1999. "Guided local search and its application to the traveling salesman problem," European Journal of Operational Research, Elsevier, vol. 113(2), pages 469-499, March.
    11. Ahmed Kheiri & Alina G. Dragomir & David Mueller & Joaquim Gromicho & Caroline Jagtenberg & Jelke J. Hoorn, 2019. "Tackling a VRP challenge to redistribute scarce equipment within time windows using metaheuristic algorithms," EURO Journal on Transportation and Logistics, Springer;EURO - The Association of European Operational Research Societies, vol. 8(5), pages 561-595, December.
    12. Ozgur, C. O. & Brown, J. R., 1995. "A two-stage traveling salesman procedure for the single machine sequence-dependent scheduling problem," Omega, Elsevier, vol. 23(2), pages 205-219, April.
    13. CASTRO, Marco & SÖRENSEN, Kenneth & GOOS, Peter & VANSTEENWEGEN, Pieter, 2014. "The multiple travelling salesperson problem with hotel selection," Working Papers 2014030, University of Antwerp, Faculty of Business and Economics.
    14. Jose Joaquin del Pozo-Antúnez & Francisco Fernández-Navarro & Horacio Molina-Sánchez & Antonio Ariza-Montes & Mariano Carbonero-Ruz, 2021. "The Machine-Part Cell Formation Problem with Non-Binary Values: A MILP Model and a Case of Study in the Accounting Profession," Mathematics, MDPI, vol. 9(15), pages 1-16, July.
    15. Sheldon H. Jacobson & Shane N. Hall & Laura A. McLay & Jeffrey E. Orosz, 2005. "Performance Analysis of Cyclical Simulated Annealing Algorithms," Methodology and Computing in Applied Probability, Springer, vol. 7(2), pages 183-201, June.
    16. Gang Du & Xi Liang & Chuanwang Sun, 2017. "Scheduling Optimization of Home Health Care Service Considering Patients’ Priorities and Time Windows," Sustainability, MDPI, vol. 9(2), pages 1-22, February.
    17. Lucas García & Pedro M. Talaván & Javier Yáñez, 2022. "The 2-opt behavior of the Hopfield Network applied to the TSP," Operational Research, Springer, vol. 22(2), pages 1127-1155, April.
    18. G Laporte, 2010. "A concise guide to the Traveling Salesman Problem," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 61(1), pages 35-40, January.
    19. Çavdar, Bahar & Sokol, Joel, 2015. "TSP Race: Minimizing completion time in time-sensitive applications," European Journal of Operational Research, Elsevier, vol. 244(1), pages 47-54.
    20. Sohrabi, Somayeh & Ziarati, Koorush & Keshtkaran, Morteza, 2020. "A Greedy Randomized Adaptive Search Procedure for the Orienteering Problem with Hotel Selection," European Journal of Operational Research, Elsevier, vol. 283(2), pages 426-440.
    21. Jean Bertrand Gauthier & Stefan Irnich, 2020. "Inter-Depot Moves and Dynamic-Radius Search for Multi-Depot Vehicle Routing Problems," Working Papers 2004, Gutenberg School of Management and Economics, Johannes Gutenberg-Universität Mainz.
    22. Chris Walshaw, 2002. "A Multilevel Approach to the Travelling Salesman Problem," Operations Research, INFORMS, vol. 50(5), pages 862-877, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pal:jorsoc:v:55:y:2004:i:7:d:10.1057_palgrave.jors.2601770. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.palgrave-journals.com/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.