IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v199y2009i1p89-97.html
   My bibliography  Save this article

Improving benders decomposition using a genetic algorithm

Author

Listed:
  • Poojari, C.A.
  • Beasley, J.E.

Abstract

We develop and investigate the performance of a hybrid solution framework for solving mixed-integer linear programming problems. Benders decomposition and a genetic algorithm are combined to develop a framework to compute feasible solutions. We decompose the problem into a master problem and a subproblem. A genetic algorithm along with a heuristic are used to obtain feasible solutions to the master problem, whereas the subproblem is solved to optimality using a linear programming solver. Over successive iterations the master problem is refined by adding cutting planes that are implied by the subproblem. We compare the performance of the approach against a standard Benders decomposition approach as well as against a stand-alone solver (Cplex) on MIPLIB test problems.

Suggested Citation

  • Poojari, C.A. & Beasley, J.E., 2009. "Improving benders decomposition using a genetic algorithm," European Journal of Operational Research, Elsevier, vol. 199(1), pages 89-97, November.
  • Handle: RePEc:eee:ejores:v:199:y:2009:i:1:p:89-97
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377-2217(08)00974-0
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cote, Gilles & Laughton, Michael A., 1984. "Large-scale mixed integer programming: Benders-type heuristics," European Journal of Operational Research, Elsevier, vol. 16(3), pages 327-333, June.
    2. Poojari, Chandra A. & Varghese, Boby, 2008. "Genetic Algorithm based technique for solving Chance Constrained Problems," European Journal of Operational Research, Elsevier, vol. 185(3), pages 1128-1154, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. M. Jenabi & S. M. T. Fatemi Ghomi & S. A. Torabi & Moeen Sammak Jalali, 2022. "An accelerated Benders decomposition algorithm for stochastic power system expansion planning using sample average approximation," OPSEARCH, Springer;Operational Research Society of India, vol. 59(4), pages 1304-1336, December.
    2. Faria, Victor. A.D. & de Queiroz, Anderson Rodrigo & Lima, Luana M.M. & Lima, José W.M., 2018. "Cooperative game theory and last addition method in the allocation of firm energy rights," Applied Energy, Elsevier, vol. 226(C), pages 905-915.
    3. Shoufeng Ji & Qi Sun, 2017. "Low-Carbon Planning and Design in B&R Logistics Service: A Case Study of an E-Commerce Big Data Platform in China," Sustainability, MDPI, vol. 9(11), pages 1-27, November.
    4. Brech, Claus-Henning & Ernst, Andreas & Kolisch, Rainer, 2019. "Scheduling medical residents’ training at university hospitals," European Journal of Operational Research, Elsevier, vol. 274(1), pages 253-266.
    5. Raidl, Günther R., 2015. "Decomposition based hybrid metaheuristics," European Journal of Operational Research, Elsevier, vol. 244(1), pages 66-76.
    6. Vahab Vahdat & Mohammad Ali Vahdatzad, 2017. "Accelerated Benders’ Decomposition for Integrated Forward/Reverse Logistics Network Design under Uncertainty," Logistics, MDPI, vol. 1(2), pages 1-21, December.
    7. Rahmaniani, Ragheb & Crainic, Teodor Gabriel & Gendreau, Michel & Rei, Walter, 2017. "The Benders decomposition algorithm: A literature review," European Journal of Operational Research, Elsevier, vol. 259(3), pages 801-817.
    8. Jalali, Sajjad & Seifbarghy, Mehdi & Niaki, Seyed Taghi Akhavan, 2018. "A risk-averse location-protection problem under intentional facility disruptions: A modified hybrid decomposition algorithm," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 114(C), pages 196-219.
    9. de Sá, Elisangela Martins & de Camargo, Ricardo Saraiva & de Miranda, Gilberto, 2013. "An improved Benders decomposition algorithm for the tree of hubs location problem," European Journal of Operational Research, Elsevier, vol. 226(2), pages 185-202.
    10. Lixin Tang & Wei Jiang & Georgios Saharidis, 2013. "An improved Benders decomposition algorithm for the logistics facility location problem with capacity expansions," Annals of Operations Research, Springer, vol. 210(1), pages 165-190, November.
    11. Teodor Gabriel Crainic & Mike Hewitt & Francesca Maggioni & Walter Rei, 2021. "Partial Benders Decomposition: General Methodology and Application to Stochastic Network Design," Transportation Science, INFORMS, vol. 55(2), pages 414-435, March.
    12. Reddy, K. Nageswara & Kumar, Akhilesh & Choudhary, Alok & Cheng, T. C. Edwin, 2022. "Multi-period green reverse logistics network design: An improved Benders-decomposition-based heuristic approach," European Journal of Operational Research, Elsevier, vol. 303(2), pages 735-752.
    13. Ragheb Rahmaniani & Shabbir Ahmed & Teodor Gabriel Crainic & Michel Gendreau & Walter Rei, 2020. "The Benders Dual Decomposition Method," Operations Research, INFORMS, vol. 68(3), pages 878-895, May.
    14. Kuthambalayan, Thyagaraj S. & Mehta, Peeyush & Shanker, Kripa, 2014. "Integrating operations and marketing decisions using delayed differentiation of products and guaranteed delivery time under stochastic demand," European Journal of Operational Research, Elsevier, vol. 237(2), pages 617-627.
    15. M. Jenabi & S. Fatemi Ghomi & S. Torabi & S. Hosseinian, 2015. "Acceleration strategies of Benders decomposition for the security constraints power system expansion planning," Annals of Operations Research, Springer, vol. 235(1), pages 337-369, December.
    16. Witthayapraphakorn, Aphisak & Charnsethikul, Peerayuth, 2019. "Benders decomposition with special purpose method for the sub problem in lot sizing problem under uncertain demand," Operations Research Perspectives, Elsevier, vol. 6(C).
    17. Gelareh, Shahin & Neamatian Monemi, Rahimeh & Nickel, Stefan, 2015. "Multi-period hub location problems in transportation," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 75(C), pages 67-94.
    18. Soler, Edilaine Martins & de Sousa, Vanusa Alves & da Costa, Geraldo R.M., 2012. "A modified Primal–Dual Logarithmic-Barrier Method for solving the Optimal Power Flow problem with discrete and continuous control variables," European Journal of Operational Research, Elsevier, vol. 222(3), pages 616-622.
    19. Neamatian Monemi, Rahimeh & Gelareh, Shahin & Nagih, Anass & Maculan, Nelson & Danach, Kassem, 2021. "Multi-period hub location problem with serial demands: A case study of humanitarian aids distribution in Lebanon," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 149(C).
    20. Gelareh, Shahin & Pisinger, David, 2011. "Fleet deployment, network design and hub location of liner shipping companies," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 47(6), pages 947-964.
    21. Ashkan Fakhri & Mehdi Ghatee, 2013. "Solution of preemptive multi-objective network design problems applying Benders decomposition method," Annals of Operations Research, Springer, vol. 210(1), pages 295-307, November.
    22. N. Beheshti Asl & S. A. MirHassani, 2019. "Accelerating benders decomposition: multiple cuts via multiple solutions," Journal of Combinatorial Optimization, Springer, vol. 37(3), pages 806-826, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pourbabai, B. & Ashayeri, J. & Van Wassenhove, L.N., 1992. "Strategic marketing, production, and distribution planning of an integrated manufacturing system," Other publications TiSEM 16c2bacb-2c2b-427e-b429-c, Tilburg University, School of Economics and Management.
    2. Qi Liu & Gengzhong Feng & Giri Kumar Tayi & Jun Tian, 2021. "Managing Data Quality of the Data Warehouse: A Chance-Constrained Programming Approach," Information Systems Frontiers, Springer, vol. 23(2), pages 375-389, April.
    3. Rahmaniani, Ragheb & Crainic, Teodor Gabriel & Gendreau, Michel & Rei, Walter, 2017. "The Benders decomposition algorithm: A literature review," European Journal of Operational Research, Elsevier, vol. 259(3), pages 801-817.
    4. Patriksson, Michael, 2008. "A survey on the continuous nonlinear resource allocation problem," European Journal of Operational Research, Elsevier, vol. 185(1), pages 1-46, February.
    5. M. Jenabi & S. Fatemi Ghomi & S. Torabi & S. Hosseinian, 2015. "Acceleration strategies of Benders decomposition for the security constraints power system expansion planning," Annals of Operations Research, Springer, vol. 235(1), pages 337-369, December.
    6. Nezamoddini, Nasim & Gholami, Amirhosein & Aqlan, Faisal, 2020. "A risk-based optimization framework for integrated supply chains using genetic algorithm and artificial neural networks," International Journal of Production Economics, Elsevier, vol. 225(C).
    7. Nader Azad & Georgios Saharidis & Hamid Davoudpour & Hooman Malekly & Seyed Yektamaram, 2013. "Strategies for protecting supply chain networks against facility and transportation disruptions: an improved Benders decomposition approach," Annals of Operations Research, Springer, vol. 210(1), pages 125-163, November.
    8. Walter Rei & Jean-François Cordeau & Michel Gendreau & Patrick Soriano, 2009. "Accelerating Benders Decomposition by Local Branching," INFORMS Journal on Computing, INFORMS, vol. 21(2), pages 333-345, May.
    9. Joe Naoum-Sawaya & Samir Elhedhli, 2013. "An interior-point Benders based branch-and-cut algorithm for mixed integer programs," Annals of Operations Research, Springer, vol. 210(1), pages 33-55, November.
    10. Hanif Sherali & Ki-Hwan Bae & Mohamed Haouari, 2013. "A benders decomposition approach for an integrated airline schedule design and fleet assignment problem with flight retiming, schedule balance, and demand recapture," Annals of Operations Research, Springer, vol. 210(1), pages 213-244, November.
    11. de Sá, Elisangela Martins & de Camargo, Ricardo Saraiva & de Miranda, Gilberto, 2013. "An improved Benders decomposition algorithm for the tree of hubs location problem," European Journal of Operational Research, Elsevier, vol. 226(2), pages 185-202.
    12. Qiushi Chen & Lei Zhao & Jan C. Fransoo & Zhe Li, 2019. "Dual-mode inventory management under a chance credit constraint," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 41(1), pages 147-178, March.
    13. Adam Bouland & Wim van Dam & Hamed Joorati & Iordanis Kerenidis & Anupam Prakash, 2020. "Prospects and challenges of quantum finance," Papers 2011.06492, arXiv.org.
    14. Sergey S. Rabotyagov & Adriana M. Valcu-Lisman & Catherine L. Kling, 2016. "Resilient Provision of Ecosystem Services from Agricultural Landscapes: Trade-offs Involving Means and Variances of Water Quality Improvements," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 98(5), pages 1295-1313.
    15. Gomes, J.H.F. & Paiva, A.P. & Costa, S.C. & Balestrassi, P.P. & Paiva, E.J., 2013. "Weighted Multivariate Mean Square Error for processes optimization: A case study on flux-cored arc welding for stainless steel claddings," European Journal of Operational Research, Elsevier, vol. 226(3), pages 522-535.
    16. Munoz, F.D. & Hobbs, B.F. & Watson, J.-P., 2016. "New bounding and decomposition approaches for MILP investment problems: Multi-area transmission and generation planning under policy constraints," European Journal of Operational Research, Elsevier, vol. 248(3), pages 888-898.
    17. M. Jenabi & S. M. T. Fatemi Ghomi & S. A. Torabi & Moeen Sammak Jalali, 2022. "An accelerated Benders decomposition algorithm for stochastic power system expansion planning using sample average approximation," OPSEARCH, Springer;Operational Research Society of India, vol. 59(4), pages 1304-1336, December.
    18. Xu, M. & Zhuan, X., 2013. "Optimal planning for wind power capacity in an electric power system," Renewable Energy, Elsevier, vol. 53(C), pages 280-286.
    19. Hadi Bidhandi, 2006. "A new approach based on the surrogating method in the project time compression problems," Annals of Operations Research, Springer, vol. 143(1), pages 237-250, March.
    20. Azad, Nader & Hassini, Elkafi, 2019. "Recovery strategies from major supply disruptions in single and multiple sourcing networks," European Journal of Operational Research, Elsevier, vol. 275(2), pages 481-501.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:199:y:2009:i:1:p:89-97. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.