IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this article

An integer linear programming approach and a hybrid variable neighborhood search for the car sequencing problem

Listed author(s):
  • Prandtstetter, Matthias
  • Raidl, Günther R.
Registered author(s):

    In this paper we present two major approaches to solve the car sequencing problem, in which the goal is to find an optimal arrangement of commissioned vehicles along a production line with respect to constraints of the form "no more than lc cars are allowed to require a component c in any subsequence of mc consecutive cars". The first method is an exact one based on integer linear programming (ILP). The second approach is hybrid: it uses ILP techniques within a general variable neighborhood search (VNS) framework for examining large neighborhoods. We tested the two methods on benchmark instances provided by CSPLIB and the automobile manufacturer RENAULT for the ROADEF Challenge 2005. These tests reveal that our approaches are competitive to previous reported algorithms. For the CSPLIB instances we were able to shorten the required computation time for reaching and proving optimality. Furthermore, we were able to obtain tight bounds on some of the ROADEF instances. For two of these instances the proposed ILP-method could provide new optimality proofs for already known solutions. For the VNS, the individual contributions of the used neighborhoods are also experimentally analyzed. Results highlight the significant impact of each structure. In particular the large ones examined using ILP techniques enhance the overall performance significantly, so that the hybrid approach clearly outperforms variants including only commonly defined neighborhoods.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Article provided by Elsevier in its journal European Journal of Operational Research.

    Volume (Year): 191 (2008)
    Issue (Month): 3 (December)
    Pages: 1004-1022

    in new window

    Handle: RePEc:eee:ejores:v:191:y:2008:i:3:p:1004-1022
    Contact details of provider: Web page:

    No references listed on IDEAS
    You can help add them by filling out this form.

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:191:y:2008:i:3:p:1004-1022. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.