Delayed improvement local search
Author
Abstract
Suggested Citation
DOI: 10.1007/s10732-021-09479-9
Download full text from publisher
As the access to this document is restricted, you may want to
for a different version of it.References listed on IDEAS
- Solnon, Christine & Cung, Van Dat & Nguyen, Alain & Artigues, Christian, 2008. "The car sequencing problem: Overview of state-of-the-art methods and industrial case-study of the ROADEF'2005 challenge problem," European Journal of Operational Research, Elsevier, vol. 191(3), pages 912-927, December.
- Rego, César & Gamboa, Dorabela & Glover, Fred & Osterman, Colin, 2011. "Traveling salesman problem heuristics: Leading methods, implementations and latest advances," European Journal of Operational Research, Elsevier, vol. 211(3), pages 427-441, June.
- Gerhard Reinelt, 1991. "TSPLIB—A Traveling Salesman Problem Library," INFORMS Journal on Computing, INFORMS, vol. 3(4), pages 376-384, November.
- Fred Glover, 1989. "Tabu Search---Part I," INFORMS Journal on Computing, INFORMS, vol. 1(3), pages 190-206, August.
- Helena R. Lourenço & Olivier C. Martin & Thomas Stützle, 2010. "Iterated Local Search: Framework and Applications," International Series in Operations Research & Management Science, in: Michel Gendreau & Jean-Yves Potvin (ed.), Handbook of Metaheuristics, chapter 0, pages 363-397, Springer.
- Prandtstetter, Matthias & Raidl, Günther R., 2008. "An integer linear programming approach and a hybrid variable neighborhood search for the car sequencing problem," European Journal of Operational Research, Elsevier, vol. 191(3), pages 1004-1022, December.
- Eugeniusz Nowicki & Czeslaw Smutnicki, 1996. "A Fast Taboo Search Algorithm for the Job Shop Problem," Management Science, INFORMS, vol. 42(6), pages 797-813, June.
- Joseph F. Pekny & Donald L. Miller, 1994. "A Staged Primal-Dual Algorithm for Finding a Minimum Cost Perfect Two-Matching in an Undirected Graph," INFORMS Journal on Computing, INFORMS, vol. 6(1), pages 68-81, February.
- Laporte, Gilbert, 1992. "The traveling salesman problem: An overview of exact and approximate algorithms," European Journal of Operational Research, Elsevier, vol. 59(2), pages 231-247, June.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Lancia, Giuseppe & Vidoni, Paolo, 2020. "Finding the largest triangle in a graph in expected quadratic time," European Journal of Operational Research, Elsevier, vol. 286(2), pages 458-467.
- Muren, & Wu, Jianjun & Zhou, Li & Du, Zhiping & Lv, Ying, 2019. "Mixed steepest descent algorithm for the traveling salesman problem and application in air logistics," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 126(C), pages 87-102.
- Afsaneh Amiri & Majid Salari, 2019. "Time-constrained maximal covering routing problem," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 41(2), pages 415-468, June.
- A. S. Santos & A. M. Madureira & M. L. R. Varela, 2018. "The Influence of Problem Specific Neighborhood Structures in Metaheuristics Performance," Journal of Mathematics, Hindawi, vol. 2018, pages 1-14, July.
- Gary R. Waissi & Pragya Kaushal, 2020. "A polynomial matrix processing heuristic algorithm for finding high quality feasible solutions for the TSP," OPSEARCH, Springer;Operational Research Society of India, vol. 57(1), pages 73-87, March.
- Sleegers, Joeri & Olij, Richard & van Horn, Gijs & van den Berg, Daan, 2020. "Where the really hard problems aren’t," Operations Research Perspectives, Elsevier, vol. 7(C).
- Burger, M. & Su, Z. & De Schutter, B., 2018. "A node current-based 2-index formulation for the fixed-destination multi-depot travelling salesman problem," European Journal of Operational Research, Elsevier, vol. 265(2), pages 463-477.
- William Cook & Sanjeeb Dash & Ricardo Fukasawa & Marcos Goycoolea, 2009. "Numerically Safe Gomory Mixed-Integer Cuts," INFORMS Journal on Computing, INFORMS, vol. 21(4), pages 641-649, November.
- Thiago Serra & Ryan J. O’Neil, 2020. "MIPLIBing: Seamless Benchmarking of Mathematical Optimization Problems and Metadata Extensions," SN Operations Research Forum, Springer, vol. 1(3), pages 1-6, September.
- Barbato, Michele & Gouveia, Luís, 2024. "The Hamiltonian p-median problem: Polyhedral results and branch-and-cut algorithms," European Journal of Operational Research, Elsevier, vol. 316(2), pages 473-487.
- Saïd Echchakoui, 2020. "Why and how to merge Scopus and Web of Science during bibliometric analysis: the case of sales force literature from 1912 to 2019," Journal of Marketing Analytics, Palgrave Macmillan, vol. 8(3), pages 165-184, September.
- Balma, Ali & Salem, Safa Ben & Mrad, Mehdi & Ladhari, Talel, 2018. "Strong multi-commodity flow formulations for the asymmetric traveling salesman problem," European Journal of Operational Research, Elsevier, vol. 271(1), pages 72-79.
- S Salhi & A Al-Khedhairi, 2010. "Integrating heuristic information into exact methods: The case of the vertex p-centre problem," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 61(11), pages 1619-1631, November.
- Marilène Cherkesly & Claudio Contardo, 2021. "The conditional p-dispersion problem," Journal of Global Optimization, Springer, vol. 81(1), pages 23-83, September.
- Malaguti, Enrico & Martello, Silvano & Santini, Alberto, 2018. "The traveling salesman problem with pickups, deliveries, and draft limits," Omega, Elsevier, vol. 74(C), pages 50-58.
- Pongcharoen, P. & Hicks, C. & Braiden, P. M. & Stewardson, D. J., 2002. "Determining optimum Genetic Algorithm parameters for scheduling the manufacturing and assembly of complex products," International Journal of Production Economics, Elsevier, vol. 78(3), pages 311-322, August.
- Bernardino, Raquel & Paias, Ana, 2018. "Solving the family traveling salesman problem," European Journal of Operational Research, Elsevier, vol. 267(2), pages 453-466.
- Ernst Althaus & Felix Rauterberg & Sarah Ziegler, 2020. "Computing Euclidean Steiner trees over segments," EURO Journal on Computational Optimization, Springer;EURO - The Association of European Operational Research Societies, vol. 8(3), pages 309-325, October.
- Saïd Echchakoui, 0. "Why and how to merge Scopus and Web of Science during bibliometric analysis: the case of sales force literature from 1912 to 2019," Journal of Marketing Analytics, Palgrave Macmillan, vol. 0, pages 1-20.
- William Cook & Daniel G. Espinoza & Marcos Goycoolea, 2007. "Computing with Domino-Parity Inequalities for the Traveling Salesman Problem (TSP)," INFORMS Journal on Computing, INFORMS, vol. 19(3), pages 356-365, August.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joheur:v:27:y:2021:i:5:d:10.1007_s10732-021-09479-9. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.