IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v169y2006i3p978-993.html
   My bibliography  Save this article

A dynamic neighborhood based tabu search algorithm for real-world flight instructor scheduling problems

Author

Listed:
  • Xu, Jiefeng
  • Sohoni, Milind
  • McCleery, Mike
  • Bailey, T. Glenn

Abstract

No abstract is available for this item.

Suggested Citation

  • Xu, Jiefeng & Sohoni, Milind & McCleery, Mike & Bailey, T. Glenn, 2006. "A dynamic neighborhood based tabu search algorithm for real-world flight instructor scheduling problems," European Journal of Operational Research, Elsevier, vol. 169(3), pages 978-993, March.
  • Handle: RePEc:eee:ejores:v:169:y:2006:i:3:p:978-993
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377-2217(04)00574-0
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. S. Lin & B. W. Kernighan, 1973. "An Effective Heuristic Algorithm for the Traveling-Salesman Problem," Operations Research, INFORMS, vol. 21(2), pages 498-516, April.
    2. Jiefeng Xu & James P. Kelly, 1996. "A Network Flow-Based Tabu Search Heuristic for the Vehicle Routing Problem," Transportation Science, INFORMS, vol. 30(4), pages 379-393, November.
    3. Michel Gamache & François Soumis & Daniel Villeneuve & Jacques Desrosiers & Éric Gélinas, 1998. "The Preferential Bidding System at Air Canada," Transportation Science, INFORMS, vol. 32(3), pages 246-255, August.
    4. Hansen, Pierre & Mladenovic, Nenad, 2001. "Variable neighborhood search: Principles and applications," European Journal of Operational Research, Elsevier, vol. 130(3), pages 449-467, May.
    5. Ranga Anbil & Eric Gelman & Bruce Patty & Rajan Tanga, 1991. "Recent Advances in Crew-Pairing Optimization at American Airlines," Interfaces, INFORMS, vol. 21(1), pages 62-74, February.
    6. Milind G. Sohoni & T. Glenn Bailey & Kristi G. Martin & Helen Carter & Ellis L. Johnson, 2003. "Delta Optimizes Continuing-Qualification-Training Schedules for Pilots," Interfaces, INFORMS, vol. 33(5), pages 57-70, October.
    7. Paul R. Day & David M. Ryan, 1997. "Flight Attendant Rostering for Short-Haul Airline Operations," Operations Research, INFORMS, vol. 45(5), pages 649-661, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yiting Xing & Ling Li & Zhuming Bi & Marzena Wilamowska‐Korsak & Li Zhang, 2013. "Operations Research (OR) in Service Industries: A Comprehensive Review," Systems Research and Behavioral Science, Wiley Blackwell, vol. 30(3), pages 300-353, May.
    2. Albert Corominas & Alberto García-Villoria & Rafael Pastor, 2013. "Metaheuristic algorithms hybridised with variable neighbourhood search for solving the response time variability problem," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 21(2), pages 296-312, July.
    3. Nguyen, Phuong Khanh & Crainic, Teodor Gabriel & Toulouse, Michel, 2013. "A tabu search for Time-dependent Multi-zone Multi-trip Vehicle Routing Problem with Time Windows," European Journal of Operational Research, Elsevier, vol. 231(1), pages 43-56.
    4. Kozanidis, George, 2017. "Optimal assignment of aircrew trainees to simulator and classroom training sessions subject to seniority and preference restrictions," Journal of Air Transport Management, Elsevier, vol. 59(C), pages 143-154.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Maenhout, Broos & Vanhoucke, Mario, 2010. "A hybrid scatter search heuristic for personalized crew rostering in the airline industry," European Journal of Operational Research, Elsevier, vol. 206(1), pages 155-167, October.
    2. Cynthia Barnhart & Amy Cohn, 2004. "Airline Schedule Planning: Accomplishments and Opportunities," Manufacturing & Service Operations Management, INFORMS, vol. 6(1), pages 3-22, November.
    3. Atoosa Kasirzadeh & Mohammed Saddoune & François Soumis, 2017. "Airline crew scheduling: models, algorithms, and data sets," EURO Journal on Transportation and Logistics, Springer;EURO - The Association of European Operational Research Societies, vol. 6(2), pages 111-137, June.
    4. Cynthia Barnhart & Peter Belobaba & Amedeo R. Odoni, 2003. "Applications of Operations Research in the Air Transport Industry," Transportation Science, INFORMS, vol. 37(4), pages 368-391, November.
    5. Nissen, Rüdiger & Haase, Knut, 2004. "Duty-period-based network model for airline crew rescheduling," Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel 581, Christian-Albrechts-Universität zu Kiel, Institut für Betriebswirtschaftslehre.
    6. Ernst, A. T. & Jiang, H. & Krishnamoorthy, M. & Sier, D., 2004. "Staff scheduling and rostering: A review of applications, methods and models," European Journal of Operational Research, Elsevier, vol. 153(1), pages 3-27, February.
    7. Gang Yu & Michael Argüello & Gao Song & Sandra M. McCowan & Anna White, 2003. "A New Era for Crew Recovery at Continental Airlines," Interfaces, INFORMS, vol. 33(1), pages 5-22, February.
    8. Tino Henke & M. Grazia Speranza & Gerhard Wäscher, 2014. "The Multi-Compartment Vehicle Routing Problem with Flexible Compartment Sizes," FEMM Working Papers 140006, Otto-von-Guericke University Magdeburg, Faculty of Economics and Management.
    9. R Aringhieri & R Cordone, 2011. "Comparing local search metaheuristics for the maximum diversity problem," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(2), pages 266-280, February.
    10. Milind G. Sohoni & Ellis L. Johnson & T. Glenn Bailey, 2004. "Long-Range Reserve Crew Manpower Planning," Management Science, INFORMS, vol. 50(6), pages 724-739, June.
    11. Henke, Tino & Speranza, M. Grazia & Wäscher, Gerhard, 2015. "The multi-compartment vehicle routing problem with flexible compartment sizes," European Journal of Operational Research, Elsevier, vol. 246(3), pages 730-743.
    12. Lamb, John D., 2012. "Variable neighbourhood structures for cycle location problems," European Journal of Operational Research, Elsevier, vol. 223(1), pages 15-26.
    13. Milind G. Sohoni & T. Glenn Bailey & Kristi G. Martin & Helen Carter & Ellis L. Johnson, 2003. "Delta Optimizes Continuing-Qualification-Training Schedules for Pilots," Interfaces, INFORMS, vol. 33(5), pages 57-70, October.
    14. Chu, Ching-Wu, 2005. "A heuristic algorithm for the truckload and less-than-truckload problem," European Journal of Operational Research, Elsevier, vol. 165(3), pages 657-667, September.
    15. James P. Kelly & Jiefeng Xu, 1999. "A Set-Partitioning-Based Heuristic for the Vehicle Routing Problem," INFORMS Journal on Computing, INFORMS, vol. 11(2), pages 161-172, May.
    16. S. Irnich, 2008. "A Unified Modeling and Solution Framework for Vehicle Routing and Local Search-Based Metaheuristics," INFORMS Journal on Computing, INFORMS, vol. 20(2), pages 270-287, May.
    17. Hintsch, Timo & Irnich, Stefan, 2018. "Large multiple neighborhood search for the clustered vehicle-routing problem," European Journal of Operational Research, Elsevier, vol. 270(1), pages 118-131.
    18. Heykel Achour & Michel Gamache & François Soumis & Guy Desaulniers, 2007. "An Exact Solution Approach for the Preferential Bidding System Problem in the Airline Industry," Transportation Science, INFORMS, vol. 41(3), pages 354-365, August.
    19. Yannis Marinakis & Athanasios Migdalas & Panos M. Pardalos, 2009. "Multiple phase neighborhood Search—GRASP based on Lagrangean relaxation, random backtracking Lin–Kernighan and path relinking for the TSP," Journal of Combinatorial Optimization, Springer, vol. 17(2), pages 134-156, February.
    20. Sleman Saliba, 2006. "Heuristics for the lexicographic max-ordering vehicle routing problem," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 14(3), pages 313-336, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:169:y:2006:i:3:p:978-993. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.