IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v164y2005i3p592-608.html
   My bibliography  Save this article

A review of exact solution methods for the non-preemptive multiprocessor flowshop problem

Author

Listed:
  • Kis, Tamas
  • Pesch, Erwin

Abstract

No abstract is available for this item.

Suggested Citation

  • Kis, Tamas & Pesch, Erwin, 2005. "A review of exact solution methods for the non-preemptive multiprocessor flowshop problem," European Journal of Operational Research, Elsevier, vol. 164(3), pages 592-608, August.
  • Handle: RePEc:eee:ejores:v:164:y:2005:i:3:p:592-608
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377-2217(04)00104-3
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Blazewicz, Jacek & Domschke, Wolfgang & Pesch, Erwin, 1996. "The job shop scheduling problem: Conventional and new solution techniques," European Journal of Operational Research, Elsevier, vol. 93(1), pages 1-33, August.
    2. Hoogeveen, J. A. & Lenstra, J. K. & Veltman, B., 1996. "Preemptive scheduling in a two-stage multiprocessor flow shop is NP-hard," European Journal of Operational Research, Elsevier, vol. 89(1), pages 172-175, February.
    3. Carlier, Jacques, 1987. "Scheduling jobs with release dates and tails on identical machines to minimize the makespan," European Journal of Operational Research, Elsevier, vol. 29(3), pages 298-306, June.
    4. Portmann, M. -C. & Vignier, A. & Dardilhac, D. & Dezalay, D., 1998. "Branch and bound crossed with GA to solve hybrid flowshops," European Journal of Operational Research, Elsevier, vol. 107(2), pages 389-400, June.
    5. Brah, Shaukat A. & Hunsucker, John L., 1991. "Branch and bound algorithm for the flow shop with multiple processors," European Journal of Operational Research, Elsevier, vol. 51(1), pages 88-99, March.
    6. M. R. Garey & D. S. Johnson & Ravi Sethi, 1976. "The Complexity of Flowshop and Jobshop Scheduling," Mathematics of Operations Research, INFORMS, vol. 1(2), pages 117-129, May.
    7. Santos, D. L. & Hunsucker, J. L. & Deal, D. E., 1995. "Global lower bounds for flow shops with multiple processors," European Journal of Operational Research, Elsevier, vol. 80(1), pages 112-120, January.
    8. Azizoglu, Meral & Cakmak, Ergin & Kondakci, Suna, 2001. "A flexible flowshop problem with total flow time minimization," European Journal of Operational Research, Elsevier, vol. 132(3), pages 528-538, August.
    9. Linus Schrage, 1968. "Letter to the Editor—A Proof of the Optimality of the Shortest Remaining Processing Time Discipline," Operations Research, INFORMS, vol. 16(3), pages 687-690, June.
    10. Rahendran, Chandrasekharan & Chaudhuri, Dipak, 1992. "A multi-stage parallel-processor flowshop problem with minimum flowtime," European Journal of Operational Research, Elsevier, vol. 57(1), pages 111-122, February.
    11. Sriskandarajah, C. & Sethi, S. P., 1989. "Scheduling algorithms for flexible flowshops: Worst and average case performance," European Journal of Operational Research, Elsevier, vol. 43(2), pages 143-160, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Khalil Tliba & Thierno M. L. Diallo & Olivia Penas & Romdhane Ben Khalifa & Noureddine Ben Yahia & Jean-Yves Choley, 2023. "Digital twin-driven dynamic scheduling of a hybrid flow shop," Journal of Intelligent Manufacturing, Springer, vol. 34(5), pages 2281-2306, June.
    2. Quadt, Daniel & Kuhn, Heinrich, 2007. "A taxonomy of flexible flow line scheduling procedures," European Journal of Operational Research, Elsevier, vol. 178(3), pages 686-698, May.
    3. Almeder, Christian & Hartl, Richard F., 2013. "A metaheuristic optimization approach for a real-world stochastic flexible flow shop problem with limited buffer," International Journal of Production Economics, Elsevier, vol. 145(1), pages 88-95.
    4. Figielska, Ewa, 2014. "A heuristic for scheduling in a two-stage hybrid flowshop with renewable resources shared among the stages," European Journal of Operational Research, Elsevier, vol. 236(2), pages 433-444.
    5. Weng, Wei & Fujimura, Shigeru, 2012. "Control methods for dynamic time-based manufacturing under customized product lead times," European Journal of Operational Research, Elsevier, vol. 218(1), pages 86-96.
    6. Haouari, Mohamed & Hidri, Lotfi, 2008. "On the hybrid flowshop scheduling problem," International Journal of Production Economics, Elsevier, vol. 113(1), pages 495-497, May.
    7. Kim, Taebok & Glock, Christoph H., 2018. "Production planning for a two-stage production system with multiple parallel machines and variable production rates," International Journal of Production Economics, Elsevier, vol. 196(C), pages 284-292.
    8. Ruiz, Rubén & Vázquez-Rodríguez, José Antonio, 2010. "The hybrid flow shop scheduling problem," European Journal of Operational Research, Elsevier, vol. 205(1), pages 1-18, August.
    9. S. S. Panwalkar & Christos Koulamas, 2019. "The evolution of schematic representations of flow shop scheduling problems," Journal of Scheduling, Springer, vol. 22(4), pages 379-391, August.
    10. R. Hansmann & T. Rieger & U. Zimmermann, 2014. "Flexible job shop scheduling with blockages," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 79(2), pages 135-161, April.
    11. Berghman, Lotte & Leus, Roel, 2015. "Practical solutions for a dock assignment problem with trailer transportation," European Journal of Operational Research, Elsevier, vol. 246(3), pages 787-799.
    12. Rossit, Daniel Alejandro & Tohmé, Fernando & Frutos, Mariano, 2018. "The Non-Permutation Flow-Shop scheduling problem: A literature review," Omega, Elsevier, vol. 77(C), pages 143-153.
    13. Fang Wang & Yunqing Rao & Chaoyong Zhang & Qiuhua Tang & Liping Zhang, 2016. "Estimation of Distribution Algorithm for Energy-Efficient Scheduling in Turning Processes," Sustainability, MDPI, vol. 8(8), pages 1-20, August.
    14. W. Qin & J. Zhang & D. Song, 2018. "An improved ant colony algorithm for dynamic hybrid flow shop scheduling with uncertain processing time," Journal of Intelligent Manufacturing, Springer, vol. 29(4), pages 891-904, April.
    15. Quadt, Daniel & Kuhn, Heinrich, 2007. "Batch scheduling of jobs with identical process times on flexible flow lines," International Journal of Production Economics, Elsevier, vol. 105(2), pages 385-401, February.
    16. Urlings, Thijs & Ruiz, Rubén & Stützle, Thomas, 2010. "Shifting representation search for hybrid flexible flowline problems," European Journal of Operational Research, Elsevier, vol. 207(2), pages 1086-1095, December.
    17. Neufeld, Janis S. & Schulz, Sven & Buscher, Udo, 2023. "A systematic review of multi-objective hybrid flow shop scheduling," European Journal of Operational Research, Elsevier, vol. 309(1), pages 1-23.
    18. Lotte Berghman & Roel Leus & Frits Spieksma, 2014. "Optimal solutions for a dock assignment problem with trailer transportation," Annals of Operations Research, Springer, vol. 213(1), pages 3-25, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ruiz, Rubén & Vázquez-Rodríguez, José Antonio, 2010. "The hybrid flow shop scheduling problem," European Journal of Operational Research, Elsevier, vol. 205(1), pages 1-18, August.
    2. Quadt, Daniel & Kuhn, Heinrich, 2007. "A taxonomy of flexible flow line scheduling procedures," European Journal of Operational Research, Elsevier, vol. 178(3), pages 686-698, May.
    3. Mohamed Haouari & Lotfi Hidri & Anis Gharbi, 2006. "Optimal Scheduling of a Two-stage Hybrid Flow Shop," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 64(1), pages 107-124, August.
    4. Quadt, Daniel & Kuhn, Heinrich, 2007. "Batch scheduling of jobs with identical process times on flexible flow lines," International Journal of Production Economics, Elsevier, vol. 105(2), pages 385-401, February.
    5. Ann Vandevelde & Han Hoogeveen & Cor Hurkens & Jan Karel Lenstra, 2005. "Lower Bounds for the Head-Body-Tail Problem on Parallel Machines: A Computational Study of the Multiprocessor Flow Shop," INFORMS Journal on Computing, INFORMS, vol. 17(3), pages 305-320, August.
    6. Azizoglu, Meral & Cakmak, Ergin & Kondakci, Suna, 2001. "A flexible flowshop problem with total flow time minimization," European Journal of Operational Research, Elsevier, vol. 132(3), pages 528-538, August.
    7. Carlos Paternina-Arboleda & Jairo Montoya-Torres & Milton Acero-Dominguez & Maria Herrera-Hernandez, 2008. "Scheduling jobs on a k-stage flexible flow-shop," Annals of Operations Research, Springer, vol. 164(1), pages 29-40, November.
    8. Djellab, Housni & Djellab, Khaled, 2002. "Preemptive Hybrid Flowshop Scheduling problem of interval orders," European Journal of Operational Research, Elsevier, vol. 137(1), pages 37-49, February.
    9. Brah, Shaukat A. & Loo, Luan Luan, 1999. "Heuristics for scheduling in a flow shop with multiple processors," European Journal of Operational Research, Elsevier, vol. 113(1), pages 113-122, February.
    10. Ruiz, Ruben & Maroto, Concepcion, 2006. "A genetic algorithm for hybrid flowshops with sequence dependent setup times and machine eligibility," European Journal of Operational Research, Elsevier, vol. 169(3), pages 781-800, March.
    11. Lin, Hung-Tso & Liao, Ching-Jong, 2003. "A case study in a two-stage hybrid flow shop with setup time and dedicated machines," International Journal of Production Economics, Elsevier, vol. 86(2), pages 133-143, November.
    12. Niu, Qun & Zhou, Taijin & Fei, Minrui & Wang, Bing, 2012. "An efficient quantum immune algorithm to minimize mean flow time for hybrid flow shop problems," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 84(C), pages 1-25.
    13. Moursli, O. & Pochet, Y., 2000. "A branch-and-bound algorithm for the hybrid flowshop," International Journal of Production Economics, Elsevier, vol. 64(1-3), pages 113-125, March.
    14. Fan Yang & Roel Leus, 2021. "Scheduling hybrid flow shops with time windows," Journal of Heuristics, Springer, vol. 27(1), pages 133-158, April.
    15. Sun, Xi & Morizawa, Kazuko & Nagasawa, Hiroyuki, 2003. "Powerful heuristics to minimize makespan in fixed, 3-machine, assembly-type flowshop scheduling," European Journal of Operational Research, Elsevier, vol. 146(3), pages 498-516, May.
    16. Néron, Emmanuel & Baptiste, Philippe & Gupta, Jatinder N. D., 2001. "Solving hybrid flow shop problem using energetic reasoning and global operations," Omega, Elsevier, vol. 29(6), pages 501-511, December.
    17. F Sivrikaya şerifoğlu & G Ulusoy, 2004. "Multiprocessor task scheduling in multistage hybrid flow-shops: a genetic algorithm approach," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 55(5), pages 504-512, May.
    18. Rossi, Andrea, 2014. "Flexible job shop scheduling with sequence-dependent setup and transportation times by ant colony with reinforced pheromone relationships," International Journal of Production Economics, Elsevier, vol. 153(C), pages 253-267.
    19. Hoogeveen, J. A. & Lenstra, J. K. & Veltman, B., 1996. "Preemptive scheduling in a two-stage multiprocessor flow shop is NP-hard," European Journal of Operational Research, Elsevier, vol. 89(1), pages 172-175, February.
    20. A Allahverdi & F S Al-Anzi, 2006. "Scheduling multi-stage parallel-processor services to minimize average response time," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 57(1), pages 101-110, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:164:y:2005:i:3:p:592-608. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.