IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v142y2002i2p231-241.html
   My bibliography  Save this article

Diversification strategies in local search for a nonbifurcated network loading problem

Author

Listed:
  • Gendron, Bernard
  • Potvin, Jean-Yves
  • Soriano, Patrick

Abstract

No abstract is available for this item.

Suggested Citation

  • Gendron, Bernard & Potvin, Jean-Yves & Soriano, Patrick, 2002. "Diversification strategies in local search for a nonbifurcated network loading problem," European Journal of Operational Research, Elsevier, vol. 142(2), pages 231-241, October.
  • Handle: RePEc:eee:ejores:v:142:y:2002:i:2:p:231-241
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377-2217(02)00263-1
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Taillard, Eric D. & Gambardella, Luca M. & Gendreau, Michel & Potvin, Jean-Yves, 2001. "Adaptive memory programming: A unified view of metaheuristics," European Journal of Operational Research, Elsevier, vol. 135(1), pages 1-16, November.
    2. T. L. Magnanti & R. T. Wong, 1984. "Network Design and Transportation Planning: Models and Algorithms," Transportation Science, INFORMS, vol. 18(1), pages 1-55, February.
    3. Vittorio Maniezzo, 1999. "Exact and Approximate Nondeterministic Tree-Search Procedures for the Quadratic Assignment Problem," INFORMS Journal on Computing, INFORMS, vol. 11(4), pages 358-369, November.
    4. Bezalel Gavish & Kemal Altinkemer, 1990. "Backbone Network Design Tools with Economic Tradeoffs," INFORMS Journal on Computing, INFORMS, vol. 2(3), pages 236-252, August.
    5. Thomas L. Magnanti & Prakash Mirchandani & Rita Vachani, 1995. "Modeling and Solving the Two-Facility Capacitated Network Loading Problem," Operations Research, INFORMS, vol. 43(1), pages 142-157, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liu, Yu-Hsin, 2008. "Diversified local search strategy under scatter search framework for the probabilistic traveling salesman problem," European Journal of Operational Research, Elsevier, vol. 191(2), pages 332-346, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liang Chen & Wei-Kun Chen & Mu-Ming Yang & Yu-Hong Dai, 2021. "An exact separation algorithm for unsplittable flow capacitated network design arc-set polyhedron," Journal of Global Optimization, Springer, vol. 81(3), pages 659-689, November.
    2. Yogesh K. Agarwal, 2002. "Design of Capacitated Multicommodity Networks with Multiple Facilities," Operations Research, INFORMS, vol. 50(2), pages 333-344, April.
    3. Scheibe, Kevin P. & Ragsdale, Cliff T., 2009. "A model for the capacitated, hop-constrained, per-packet wireless mesh network design problem," European Journal of Operational Research, Elsevier, vol. 197(2), pages 773-784, September.
    4. Andrew P. Armacost & Cynthia Barnhart & Keith A. Ware & Alysia M. Wilson, 2004. "UPS Optimizes Its Air Network," Interfaces, INFORMS, vol. 34(1), pages 15-25, February.
    5. Linos F. Frantzeskakis & Hanan Luss, 1999. "The network redesign problem for access telecommunications networks," Naval Research Logistics (NRL), John Wiley & Sons, vol. 46(5), pages 487-506, August.
    6. Andrew P. Armacost & Cynthia Barnhart & Keith A. Ware, 2002. "Composite Variable Formulations for Express Shipment Service Network Design," Transportation Science, INFORMS, vol. 36(1), pages 1-20, February.
    7. Keely L. Croxton & Bernard Gendron & Thomas L. Magnanti, 2007. "Variable Disaggregation in Network Flow Problems with Piecewise Linear Costs," Operations Research, INFORMS, vol. 55(1), pages 146-157, February.
    8. Anantaram Balakrishnan & Gang Li & Prakash Mirchandani, 2017. "Optimal Network Design with End-to-End Service Requirements," Operations Research, INFORMS, vol. 65(3), pages 729-750, June.
    9. El-Ghazali Talbi, 2016. "Combining metaheuristics with mathematical programming, constraint programming and machine learning," Annals of Operations Research, Springer, vol. 240(1), pages 171-215, May.
    10. F. Sibel Salman & R. Ravi & John N. Hooker, 2008. "Solving the Capacitated Local Access Network Design Problem," INFORMS Journal on Computing, INFORMS, vol. 20(2), pages 243-254, May.
    11. Mervat Chouman & Teodor Gabriel Crainic & Bernard Gendron, 2017. "Commodity Representations and Cut-Set-Based Inequalities for Multicommodity Capacitated Fixed-Charge Network Design," Transportation Science, INFORMS, vol. 51(2), pages 650-667, May.
    12. Majid Taghavi & Kai Huang, 2020. "A Lagrangian relaxation approach for stochastic network capacity expansion with budget constraints," Annals of Operations Research, Springer, vol. 284(2), pages 605-621, January.
    13. Gutierrez, Genaro J. & Kouvelis, Panagiotis & Kurawarwala, Abbas A., 1996. "A robustness approach to uncapacitated network design problems," European Journal of Operational Research, Elsevier, vol. 94(2), pages 362-376, October.
    14. Petersen, E. R. & Taylor, A. J., 2001. "An investment planning model for a new North-Central railway in Brazil," Transportation Research Part A: Policy and Practice, Elsevier, vol. 35(9), pages 847-862, November.
    15. Agarwal, Y.K. & Aneja, Y.P. & Jayaswal, Sachin, 2022. "Directed fixed charge multicommodity network design: A cutting plane approach using polar duality," European Journal of Operational Research, Elsevier, vol. 299(1), pages 118-136.
    16. Cipriani, Ernesto & Fusco, Gaetano, 2004. "Combined signal setting design and traffic assignment problem," European Journal of Operational Research, Elsevier, vol. 155(3), pages 569-583, June.
    17. Wu, Dexiang & Wu, Desheng Dash, 2020. "A decision support approach for two-stage multi-objective index tracking using improved lagrangian decomposition," Omega, Elsevier, vol. 91(C).
    18. Ortiz-Astorquiza, Camilo & Contreras, Ivan & Laporte, Gilbert, 2018. "Multi-level facility location problems," European Journal of Operational Research, Elsevier, vol. 267(3), pages 791-805.
    19. Lara, Cristiana L. & Koenemann, Jochen & Nie, Yisu & de Souza, Cid C., 2023. "Scalable timing-aware network design via lagrangian decomposition," European Journal of Operational Research, Elsevier, vol. 309(1), pages 152-169.
    20. Klaus Büdenbender & Tore Grünert & Hans-Jürgen Sebastian, 2000. "A Hybrid Tabu Search/Branch-and-Bound Algorithm for the Direct Flight Network Design Problem," Transportation Science, INFORMS, vol. 34(4), pages 364-380, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:142:y:2002:i:2:p:231-241. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.