IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v197y2009i2p773-784.html
   My bibliography  Save this article

A model for the capacitated, hop-constrained, per-packet wireless mesh network design problem

Author

Listed:
  • Scheibe, Kevin P.
  • Ragsdale, Cliff T.

Abstract

Three critical factors in wireless mesh network design are the number of hops between supply and demand points, the bandwidth capacity of the transport media, and the technique used to route packets within the network. Most previous research on network design has focused on the issue of hop constraints and/or bandwidth capacity in wired networks while assuming a per-flow routing scheme. However, networks that employ per-packet routing schemes in wireless networks involve different design issues that are unique to this type of problem. We present a methodology for designing wireless mesh networks that consider bandwidth capacity, hop constraints, and profitability for networks employing a per-packet routing system.

Suggested Citation

  • Scheibe, Kevin P. & Ragsdale, Cliff T., 2009. "A model for the capacitated, hop-constrained, per-packet wireless mesh network design problem," European Journal of Operational Research, Elsevier, vol. 197(2), pages 773-784, September.
  • Handle: RePEc:eee:ejores:v:197:y:2009:i:2:p:773-784
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377-2217(08)00562-6
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Gouveia, Luis, 1996. "Multicommodity flow models for spanning trees with hop constraints," European Journal of Operational Research, Elsevier, vol. 95(1), pages 178-190, November.
    2. Mirchandani, Prakash, 2000. "Projections of the capacitated network loading problem," European Journal of Operational Research, Elsevier, vol. 122(3), pages 534-560, May.
    3. T. L. Magnanti & R. T. Wong, 1984. "Network Design and Transportation Planning: Models and Algorithms," Transportation Science, INFORMS, vol. 18(1), pages 1-55, February.
    4. Hasan Pirkul & Sridhar Narasimhan, 1994. "Primary and Secondary Route Selection in Backbone Computer Networks," INFORMS Journal on Computing, INFORMS, vol. 6(1), pages 50-60, February.
    5. Anantaram Balakrishnan & Thomas L. Magnanti & Prakash Mirchandani, 1998. "Designing Hierarchical Survivable Networks," Operations Research, INFORMS, vol. 46(1), pages 116-136, February.
    6. Anantaram Balakrishnan & Thomas L. Magnanti & Richard T. Wong, 1995. "A Decomposition Algorithm for Local Access Telecommunications Network Expansion Planning," Operations Research, INFORMS, vol. 43(1), pages 58-76, February.
    7. Bezalel Gavish & Kemal Altinkemer, 1990. "Backbone Network Design Tools with Economic Tradeoffs," INFORMS Journal on Computing, INFORMS, vol. 2(3), pages 236-252, August.
    8. Samit Soni, 2001. "Hop Constrained Network Design Problem with Partial Survivability," Annals of Operations Research, Springer, vol. 106(1), pages 181-198, September.
    9. Luis Gouveia, 1998. "Using Variable Redefinition for Computing Lower Bounds for Minimum Spanning and Steiner Trees with Hop Constraints," INFORMS Journal on Computing, INFORMS, vol. 10(2), pages 180-188, May.
    10. Pirkul, Hasan & Soni, Samit, 2003. "New formulations and solution procedures for the hop constrained network design problem," European Journal of Operational Research, Elsevier, vol. 148(1), pages 126-140, July.
    11. L. Gouveia & P. Martins, 1999. "The Capacitated Minimal Spanning Tree Problem: An experiment with a hop‐indexedmodel," Annals of Operations Research, Springer, vol. 86(0), pages 271-294, January.
    12. Larry J. LeBlanc & Jerome Chifflet & Philippe Mahey, 1999. "Packet Routing in Telecommunication Networks with Path and Flow Restrictions," INFORMS Journal on Computing, INFORMS, vol. 11(2), pages 188-197, May.
    13. Gouveia, Luis & Joao Lopes, Maria, 2005. "The capacitated minimum spanning tree problem: On improved multistar constraints," European Journal of Operational Research, Elsevier, vol. 160(1), pages 47-62, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pirkul, Hasan & Soni, Samit, 2003. "New formulations and solution procedures for the hop constrained network design problem," European Journal of Operational Research, Elsevier, vol. 148(1), pages 126-140, July.
    2. Akgün, Ibrahim & Tansel, Barbaros Ç., 2011. "New formulations of the Hop-Constrained Minimum Spanning Tree problem via Miller-Tucker-Zemlin constraints," European Journal of Operational Research, Elsevier, vol. 212(2), pages 263-276, July.
    3. Quentin Botton & Bernard Fortz & Luis Gouveia & Michael Poss, 2013. "Benders Decomposition for the Hop-Constrained Survivable Network Design Problem," INFORMS Journal on Computing, INFORMS, vol. 25(1), pages 13-26, February.
    4. Linos F. Frantzeskakis & Hanan Luss, 1999. "The network redesign problem for access telecommunications networks," Naval Research Logistics (NRL), John Wiley & Sons, vol. 46(5), pages 487-506, August.
    5. Costa, Alysson M. & Cordeau, Jean-François & Laporte, Gilbert, 2008. "Fast heuristics for the Steiner tree problem with revenues, budget and hop constraints," European Journal of Operational Research, Elsevier, vol. 190(1), pages 68-78, October.
    6. BOTTON, Quentin & FORTZ, Bernard & GOUVEIA, Luis & POSS, Michael, 2011. "Benders decomposition for the hop-constrained survivable network design problem," LIDAM Discussion Papers CORE 2011037, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    7. Okan Arslan & Ola Jabali & Gilbert Laporte, 2020. "A Flexible, Natural Formulation for the Network Design Problem with Vulnerability Constraints," INFORMS Journal on Computing, INFORMS, vol. 32(1), pages 120-134, January.
    8. Yazar, Başak & Arslan, Okan & Karaşan, Oya Ekin & Kara, Bahar Y., 2016. "Fiber optical network design problems: A case for Turkey," Omega, Elsevier, vol. 63(C), pages 23-40.
    9. Gendron, Bernard & Potvin, Jean-Yves & Soriano, Patrick, 2002. "Diversification strategies in local search for a nonbifurcated network loading problem," European Journal of Operational Research, Elsevier, vol. 142(2), pages 231-241, October.
    10. van de Leensel, R.L.J.M. & Flippo, O.E. & Koster, Arie M.C.A. & Kolen, A.W.J., 1996. "A dynamic programming algorithm for the local access network expansion problem," Research Memorandum 027, Maastricht University, Maastricht Research School of Economics of Technology and Organization (METEOR).
    11. S Mudchanatongsuk & F Ordóñez & J Liu, 2008. "Robust solutions for network design under transportation cost and demand uncertainty," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 59(5), pages 652-662, May.
    12. Corte-Real, Margarida & Gouveia, Luís, 2010. "A node rooted flow-based model for the local access network expansion problem," European Journal of Operational Research, Elsevier, vol. 204(1), pages 20-34, July.
    13. Naga V. C. Gudapati & Enrico Malaguti & Michele Monaci, 2022. "Network Design with Service Requirements: Scaling-up the Size of Solvable Problems," INFORMS Journal on Computing, INFORMS, vol. 34(5), pages 2571-2582, September.
    14. De Boeck, Jérôme & Fortz, Bernard, 2018. "Extended formulation for hop constrained distribution network configuration problems," European Journal of Operational Research, Elsevier, vol. 265(2), pages 488-502.
    15. Altinkemer, Kemal & Bose, Indranil, 2003. "Asynchronous transfer mode networks with parallel links and multiple service classes," European Journal of Operational Research, Elsevier, vol. 146(1), pages 181-198, April.
    16. Amiri, Ali & Pirkul, Hasan, 1996. "Primary and secondary route selection in backbone communication networks," European Journal of Operational Research, Elsevier, vol. 93(1), pages 98-109, August.
    17. Ali Amiri & Hasan Pirkul, 1997. "Routing in packet‐switched communication networks with different criticality classes of communicating node pairs," Naval Research Logistics (NRL), John Wiley & Sons, vol. 44(5), pages 485-505, August.
    18. Iago A. Carvalho & Amadeu A. Coco, 2023. "On solving bi-objective constrained minimum spanning tree problems," Journal of Global Optimization, Springer, vol. 87(1), pages 301-323, September.
    19. Uchoa, Eduardo & Fukasawa, Ricardo & Lysgaard, Jens & Pessoa, Artur & Poggi de Aragão, Marcus & Andrade, Diogo, 2006. "Robust Branch-Cut-and-Price for the Capacitated Minimum Spanning Tree Problem over a Large Extended Formulation," CORAL Working Papers L-2006-08, University of Aarhus, Aarhus School of Business, Department of Business Studies.
    20. Luis Gouveia & Thomas Magnanti & Cristina Requejo, 2006. "An intersecting tree model for odd-diameter-constrained minimum spanning and Steiner trees," Annals of Operations Research, Springer, vol. 146(1), pages 19-39, September.

    More about this item

    Keywords

    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:197:y:2009:i:2:p:773-784. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.