IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v93y1996i1p98-109.html
   My bibliography  Save this article

Primary and secondary route selection in backbone communication networks

Author

Listed:
  • Amiri, Ali
  • Pirkul, Hasan

Abstract

No abstract is available for this item.

Suggested Citation

  • Amiri, Ali & Pirkul, Hasan, 1996. "Primary and secondary route selection in backbone communication networks," European Journal of Operational Research, Elsevier, vol. 93(1), pages 98-109, August.
  • Handle: RePEc:eee:ejores:v:93:y:1996:i:1:p:98-109
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/0377-2217(95)00075-5
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hasan Pirkul & Sridhar Narasimhan, 1994. "Primary and Secondary Route Selection in Backbone Computer Networks," INFORMS Journal on Computing, INFORMS, vol. 6(1), pages 50-60, February.
    2. Bezalel Gavish & Kemal Altinkemer, 1990. "Backbone Network Design Tools with Economic Tradeoffs," INFORMS Journal on Computing, INFORMS, vol. 2(3), pages 236-252, August.
    3. A. Balakrishnan & T. L. Magnanti & R. T. Wong, 1989. "A Dual-Ascent Procedure for Large-Scale Uncapacitated Network Design," Operations Research, INFORMS, vol. 37(5), pages 716-740, October.
    4. Bazaraa, Mokhtar S. & Goode, Jamie J., 1979. "A survey of various tactics for generating Lagrangian multipliers in the context of Lagrangian duality," European Journal of Operational Research, Elsevier, vol. 3(4), pages 322-338, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pirkul, Hasan & Soni, Samit, 2003. "New formulations and solution procedures for the hop constrained network design problem," European Journal of Operational Research, Elsevier, vol. 148(1), pages 126-140, July.
    2. Narasimhan, Sridhar & Soni, Samit & Song, Sang Hwa, 2006. "ATM network design for corporate networks," European Journal of Operational Research, Elsevier, vol. 170(2), pages 644-663, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ali Amiri & Hasan Pirkul, 1997. "Routing in packet‐switched communication networks with different criticality classes of communicating node pairs," Naval Research Logistics (NRL), John Wiley & Sons, vol. 44(5), pages 485-505, August.
    2. Amiri, Ali & Pirkul, Hasan, 1999. "Routing and capacity assignment in backbone communication networks under time varying traffic conditions," European Journal of Operational Research, Elsevier, vol. 117(1), pages 15-29, August.
    3. Altinkemer, Kemal & Bose, Indranil, 2003. "Asynchronous transfer mode networks with parallel links and multiple service classes," European Journal of Operational Research, Elsevier, vol. 146(1), pages 181-198, April.
    4. Pirkul, Hasan & Soni, Samit, 2003. "New formulations and solution procedures for the hop constrained network design problem," European Journal of Operational Research, Elsevier, vol. 148(1), pages 126-140, July.
    5. Scheibe, Kevin P. & Ragsdale, Cliff T., 2009. "A model for the capacitated, hop-constrained, per-packet wireless mesh network design problem," European Journal of Operational Research, Elsevier, vol. 197(2), pages 773-784, September.
    6. Melkote, Sanjay & Daskin, Mark S., 2001. "Capacitated facility location/network design problems," European Journal of Operational Research, Elsevier, vol. 129(3), pages 481-495, March.
    7. Liang Chen & Wei-Kun Chen & Mu-Ming Yang & Yu-Hong Dai, 2021. "An exact separation algorithm for unsplittable flow capacitated network design arc-set polyhedron," Journal of Global Optimization, Springer, vol. 81(3), pages 659-689, November.
    8. Imai, Akio & Nishimura, Etsuko & Current, John, 2007. "A Lagrangian relaxation-based heuristic for the vehicle routing with full container load," European Journal of Operational Research, Elsevier, vol. 176(1), pages 87-105, January.
    9. Yogesh K. Agarwal, 2002. "Design of Capacitated Multicommodity Networks with Multiple Facilities," Operations Research, INFORMS, vol. 50(2), pages 333-344, April.
    10. M. Gisela Bardossy & S. Raghavan, 2010. "Dual-Based Local Search for the Connected Facility Location and Related Problems," INFORMS Journal on Computing, INFORMS, vol. 22(4), pages 584-602, November.
    11. Kaj Holmberg & Johan Hellstrand, 1998. "Solving the Uncapacitated Network Design Problem by a Lagrangean Heuristic and Branch-and-Bound," Operations Research, INFORMS, vol. 46(2), pages 247-259, April.
    12. Sabyasachi Mitra & Ishwar Murthy, 1998. "A Dual Ascent Procedure with Valid Inequalities for Designing Hierarchical Network Topologies," INFORMS Journal on Computing, INFORMS, vol. 10(1), pages 40-55, February.
    13. Gouveia, Luis, 1996. "Multicommodity flow models for spanning trees with hop constraints," European Journal of Operational Research, Elsevier, vol. 95(1), pages 178-190, November.
    14. Gendron, Bernard, 2002. "A note on "a dual-ascent approach to the fixed-charge capacitated network design problem"," European Journal of Operational Research, Elsevier, vol. 138(3), pages 671-675, May.
    15. Bjorndal, M. H. & Caprara, A. & Cowling, P. I. & Della Croce, F. & Lourenco, H. & Malucelli, F. & Orman, A. J. & Pisinger, D. & Rego, C. & Salazar, J. J., 1995. "Some thoughts on combinatorial optimisation," European Journal of Operational Research, Elsevier, vol. 83(2), pages 253-270, June.
    16. Anantaram Balakrishnan & Prakash Mirchandani & Harihara Prasad Natarajan, 2009. "Connectivity Upgrade Models for Survivable Network Design," Operations Research, INFORMS, vol. 57(1), pages 170-186, February.
    17. Fragkos, Ioannis & Cordeau, Jean-François & Jans, Raf, 2021. "Decomposition methods for large-scale network expansion problems," Transportation Research Part B: Methodological, Elsevier, vol. 144(C), pages 60-80.
    18. Bretthauer, Kurt M., 1996. "Capacity planning in manufacturing and computer networks," European Journal of Operational Research, Elsevier, vol. 91(2), pages 386-394, June.
    19. Kaj Holmberg & Kurt Jörnsten, 1996. "Solving the generalized knapsack problem with variable coefficients," Naval Research Logistics (NRL), John Wiley & Sons, vol. 43(5), pages 673-689, August.
    20. Amiri, Ali, 2002. "An integrated approach for planning the adoption of client/server systems," European Journal of Operational Research, Elsevier, vol. 142(3), pages 509-522, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:93:y:1996:i:1:p:98-109. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.