IDEAS home Printed from https://ideas.repec.org/a/eee/econom/v249y2025ipas0304407624002732.html
   My bibliography  Save this article

Interval quantile correlations with applications to testing high-dimensional quantile effects

Author

Listed:
  • Zhang, Yaowu
  • Zhou, Yeqing
  • Zhu, Liping

Abstract

In this article, we propose interval quantile correlation and interval quantile partial correlation to measure the association between two random variables over an interval of quantile levels. We construct efficient estimators for the proposed correlations, and establish their asymptotic properties under the null and alternative hypotheses. We further use the interval quantile partial correlation to test for the significance of covariate effects in high-dimensional quantile regression when a subset of covariates are controlled. We calculate marginal interval quantile partial correlations for each covariate, then aggregate them to construct a sum-type test statistic. The null distribution of our proposed test statistic is asymptotically standard normal. We use extensive simulations and an application to illustrate that our proposed test, which pools information across an interval of quantile levels to enhance power performances, is very effective in detecting quantile effects.

Suggested Citation

  • Zhang, Yaowu & Zhou, Yeqing & Zhu, Liping, 2025. "Interval quantile correlations with applications to testing high-dimensional quantile effects," Journal of Econometrics, Elsevier, vol. 249(PA).
  • Handle: RePEc:eee:econom:v:249:y:2025:i:pa:s0304407624002732
    DOI: 10.1016/j.jeconom.2024.105922
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304407624002732
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jeconom.2024.105922?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:econom:v:249:y:2025:i:pa:s0304407624002732. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/jeconom .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.