IDEAS home Printed from https://ideas.repec.org/a/eee/econom/v201y2017i1p72-94.html
   My bibliography  Save this article

Nonparametric conditional quantile estimation: A locally weighted quantile kernel approach

Author

Listed:
  • Racine, Jeffrey S.
  • Li, Kevin

Abstract

Nonparametric conditional cumulative distribution function (CDF) estimation has emerged as a powerful tool having widespread potential application, which has led to a literature on estimators of conditional quantile functions that are obtained via inversion of the nonparametrically estimated conditional CDF. Other nonparametric estimators of conditional quantiles that are based on an alternative characterization of the quantile (i.e., as the function that minimizes the expectation of the check-function) have also appeared in the literature. In this paper, we propose a novel nonparametric approach. Relative to its inverse-CDF-based and the check-function-based peers, our proposed estimator has a simple expression. We also show that under certain conditions, our estimator is more efficient in tail regions when the data has unbounded support (our theoretical results underscore this property). Theoretical underpinnings are developed, a method for data-driven smoothing parameter selection is provided, and Monte Carlo simulations and empirical examples are considered. Two empirical examples illustrate how the proposed approach can deliver more reasonable quantile and quantile derivative estimates than its inverse-CDF-based and the check-function-based counterparts, particularly in tail regions.

Suggested Citation

  • Racine, Jeffrey S. & Li, Kevin, 2017. "Nonparametric conditional quantile estimation: A locally weighted quantile kernel approach," Journal of Econometrics, Elsevier, vol. 201(1), pages 72-94.
  • Handle: RePEc:eee:econom:v:201:y:2017:i:1:p:72-94
    DOI: 10.1016/j.jeconom.2017.06.020
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304407617301185
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jeconom.2017.06.020?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Einmahl, John H.J. & Van Keilegom, Ingrid, 2008. "Specification tests in nonparametric regression," Journal of Econometrics, Elsevier, vol. 143(1), pages 88-102, March.
    2. Victor Chernozhukov & Iv·n Fern·ndez-Val & Alfred Galichon, 2010. "Quantile and Probability Curves Without Crossing," Econometrica, Econometric Society, vol. 78(3), pages 1093-1125, May.
    3. Peter Hall & Jeff Racine & Qi Li, 2004. "Cross-Validation and the Estimation of Conditional Probability Densities," Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 1015-1026, December.
    4. Neumeyer, Natalie & Noh, Hohsuk & Van Keilegom, Ingrid, 2016. "Heteroscedastic semiparametric transformation models: estimation and testing for validity," LIDAM Reprints ISBA 2016021, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    5. Koenker, Roger W & Bassett, Gilbert, Jr, 1978. "Regression Quantiles," Econometrica, Econometric Society, vol. 46(1), pages 33-50, January.
    6. repec:hal:wpspec:info:hdl:2441/5rkqqmvrn4tl22s9mc4b6ga2g is not listed on IDEAS
    7. Peter Hall & Qi Li & Jeffrey S. Racine, 2007. "Nonparametric Estimation of Regression Functions in the Presence of Irrelevant Regressors," The Review of Economics and Statistics, MIT Press, vol. 89(4), pages 784-789, November.
    8. X. He & P. Ng & S. Portnoy, 1998. "Bivariate quantile smoothing splines," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 60(3), pages 537-550.
    9. Li, Qi & Racine, Jeffrey S, 2008. "Nonparametric Estimation of Conditional CDF and Quantile Functions With Mixed Categorical and Continuous Data," Journal of Business & Economic Statistics, American Statistical Association, vol. 26, pages 423-434.
    10. Fan, Jianqing & Yao, Qiwei & Tong, Howell, 1996. "Estimation of conditional densities and sensitivity measures in nonlinear dynamical systems," LSE Research Online Documents on Economics 6704, London School of Economics and Political Science, LSE Library.
    11. Lin, Wei & Cai, Zongwu & Li, Zheng & Su, Li, 2015. "Optimal smoothing in nonparametric conditional quantile derivative function estimation," Journal of Econometrics, Elsevier, vol. 188(2), pages 502-513.
    12. Bo Kai & Runze Li & Hui Zou, 2010. "Local composite quantile regression smoothing: an efficient and safe alternative to local polynomial regression," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 72(1), pages 49-69, January.
    13. Qi Li & Juan Lin & Jeffrey S. Racine, 2013. "Optimal Bandwidth Selection for Nonparametric Conditional Distribution and Quantile Functions," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 31(1), pages 57-65, January.
    14. repec:hal:spmain:info:hdl:2441/5rkqqmvrn4tl22s9mc4b6ga2g is not listed on IDEAS
    15. Jones, M. C. & Hall, Peter, 1990. "Mean squared error properties of kernel estimates or regression quantiles," Statistics & Probability Letters, Elsevier, vol. 10(4), pages 283-289, September.
    16. Toshio Honda, 2000. "Nonparametric Estimation of a Conditional Quantile for α-Mixing Processes," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 52(3), pages 459-470, September.
    17. Qu, Zhongjun & Yoon, Jungmo, 2015. "Nonparametric estimation and inference on conditional quantile processes," Journal of Econometrics, Elsevier, vol. 185(1), pages 1-19.
    18. Li, Dong & Li, Qi, 2010. "Nonparametric/semiparametric estimation and testing of econometric models with data dependent smoothing parameters," Journal of Econometrics, Elsevier, vol. 157(1), pages 179-190, July.
    19. Daouia, Abdelaati & Gardes, Laurent & Girard, Stephane, 2011. "On kernel smoothing for extremal quantile regression," LIDAM Discussion Papers ISBA 2011031, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    20. Fan, Jianqing & Yao, Qiwei, 1998. "Efficient estimation of conditional variance functions in stochastic regression," LSE Research Online Documents on Economics 6635, London School of Economics and Political Science, LSE Library.
    21. Taisuke Otsu, 2009. "RESET for quantile regression," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 18(2), pages 381-391, August.
    22. Angela Noufaily & M. C. Jones, 2013. "Parametric quantile regression based on the generalized gamma distribution," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 62(5), pages 723-740, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hušková, Marie & Meintanis, Simos G. & Pretorius, Charl, 2020. "Tests for validity of the semiparametric heteroskedastic transformation model," Computational Statistics & Data Analysis, Elsevier, vol. 144(C).
    2. Fahimah A. Al-Awadhi & Zoulikha Kaid & Ali Laksaci & Idir Ouassou & Mustapha Rachdi, 2019. "Functional data analysis: local linear estimation of the $$L_1$$ L 1 -conditional quantiles," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 28(2), pages 217-240, June.
    3. Laurent Gardes & Armelle Guillou & Claire Roman, 2020. "Estimation of extreme conditional quantiles under a general tail-first-order condition," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 72(4), pages 915-943, August.
    4. Kirkby, J. Lars & Leitao, Álvaro & Nguyen, Duy, 2021. "Nonparametric density estimation and bandwidth selection with B-spline bases: A novel Galerkin method," Computational Statistics & Data Analysis, Elsevier, vol. 159(C).
    5. Chen, Xirong & Li, Degui & Li, Qi & Li, Zheng, 2019. "Nonparametric estimation of conditional quantile functions in the presence of irrelevant covariates," Journal of Econometrics, Elsevier, vol. 212(2), pages 433-450.
    6. Emmanuel Torsen & Peter N. Mwita & Joseph K. Mung’atu, 2019. "A Three-Step Nonparametric Estimation of Conditional Value-At-Risk Admitting a Location-Scale Model," Journal of Statistical and Econometric Methods, SCIENPRESS Ltd, vol. 8(4), pages 1-1.
    7. Wang, Qiao, 2023. "A simple nonparametric conditional quantile estimator for time series with thin tails," Economics Letters, Elsevier, vol. 232(C).
    8. Mickaël De Backer & Anouar El Ghouch & Ingrid Van Keilegom, 2020. "Linear censored quantile regression: A novel minimum‐distance approach," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 47(4), pages 1275-1306, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qi Li & Jeffrey Scott Racine, 2006. "Nonparametric Econometrics: Theory and Practice," Economics Books, Princeton University Press, edition 1, volume 1, number 8355.
    2. Chen, Xirong & Li, Degui & Li, Qi & Li, Zheng, 2019. "Nonparametric estimation of conditional quantile functions in the presence of irrelevant covariates," Journal of Econometrics, Elsevier, vol. 212(2), pages 433-450.
    3. Dingshi Tian & Zongwu Cai & Ying Fang, 2018. "Econometric Modeling of Risk Measures: A Selective Review of the Recent Literature," WORKING PAPERS SERIES IN THEORETICAL AND APPLIED ECONOMICS 201807, University of Kansas, Department of Economics, revised Oct 2018.
    4. repec:wyi:journl:002112 is not listed on IDEAS
    5. Zongwu Cai & Qi Li, 2013. "Some Recent Develop- ments on Nonparametric Econometrics," Working Papers 2013-10-14, Wang Yanan Institute for Studies in Economics (WISE), Xiamen University.
    6. Karen X. Yan & Qi Li, 2018. "Nonparametric Estimation of a Conditional Quantile Function in a Fixed Effects Panel Data Model," JRFM, MDPI, vol. 11(3), pages 1-10, August.
    7. Qi Li & Juan Lin & Jeffrey S. Racine, 2013. "Optimal Bandwidth Selection for Nonparametric Conditional Distribution and Quantile Functions," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 31(1), pages 57-65, January.
    8. Cai, Zongwu & Xu, Xiaoping, 2009. "Nonparametric Quantile Estimations for Dynamic Smooth Coefficient Models," Journal of the American Statistical Association, American Statistical Association, vol. 104(485), pages 371-383.
    9. Haupt, Harry & Schnurbus, Joachim & Semmler, Willi, 2018. "Estimation of grouped, time-varying convergence in economic growth," Econometrics and Statistics, Elsevier, vol. 8(C), pages 141-158.
    10. Sungil Kwak & Stephen C. Smith, 2013. "Regional Agricultural Endowments and Shifts of Poverty Trap Equilibria: Evidence from Ethiopian Panel Data," Journal of Development Studies, Taylor & Francis Journals, vol. 49(7), pages 955-975, July.
    11. Kellner, Ralf & Nagl, Maximilian & Rösch, Daniel, 2022. "Opening the black box – Quantile neural networks for loss given default prediction," Journal of Banking & Finance, Elsevier, vol. 134(C).
    12. Xie, Qichang & Sun, Qiankun, 2019. "Computation and application of robust data-driven bandwidth selection for gradient function estimation," Applied Mathematics and Computation, Elsevier, vol. 361(C), pages 274-293.
    13. Lin, Wei & Cai, Zongwu & Li, Zheng & Su, Li, 2015. "Optimal smoothing in nonparametric conditional quantile derivative function estimation," Journal of Econometrics, Elsevier, vol. 188(2), pages 502-513.
    14. Wang, Qiao, 2023. "A simple nonparametric conditional quantile estimator for time series with thin tails," Economics Letters, Elsevier, vol. 232(C).
    15. Charlier, Isabelle & Paindaveine, Davy & Saracco, Jérôme, 2015. "Conditional quantile estimation based on optimal quantization: From theory to practice," Computational Statistics & Data Analysis, Elsevier, vol. 91(C), pages 20-39.
    16. Fan, Yanqin & Liu, Ruixuan, 2016. "A direct approach to inference in nonparametric and semiparametric quantile models," Journal of Econometrics, Elsevier, vol. 191(1), pages 196-216.
    17. Michael S. Delgado & Daniel J. Henderson & Christopher F. Parmeter, 2014. "Does Education Matter for Economic Growth?," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 76(3), pages 334-359, June.
    18. Nolwenn Roudaut & Anne Vanhems, 2012. "Explaining firms efficiency in the Ivorian manufacturing sector: a robust nonparametric approach," Journal of Productivity Analysis, Springer, vol. 37(2), pages 155-169, April.
    19. Jianqing Fan, 2004. "A selective overview of nonparametric methods in financial econometrics," Papers math/0411034, arXiv.org.
    20. Mickaël De Backer & Anouar El Ghouch & Ingrid Van Keilegom, 2020. "Linear censored quantile regression: A novel minimum‐distance approach," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 47(4), pages 1275-1306, December.
    21. Chan Jennifer So Kuen & Ng Kok-Haur & Nitithumbundit Thanakorn & Peiris Shelton, 2019. "Efficient estimation of financial risk by regressing the quantiles of parametric distributions: An application to CARR models," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 23(2), pages 1-22, April.

    More about this item

    Keywords

    Kernel smoothing; Quantile Kernel function;

    JEL classification:

    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:econom:v:201:y:2017:i:1:p:72-94. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/jeconom .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.