IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v504y2025ics0304380025000675.html
   My bibliography  Save this article

Empirical dynamic modeling for prediction and control of pest populations

Author

Listed:
  • Johnson, Bethany J.
  • Gomez, Marcella M.
  • Munch, Stephan B.

Abstract

Insect pests pose a threat to humans by jeopardizing food security in agricultural systems, acting as vectors for infectious diseases, and damaging forests and other ecosystems. Despite decades of research, effective pest management remains challenging. Incomplete understanding of the mechanisms behind pest population dynamics limits our ability to anticipate outbreaks. Hence, pest management is often reactive, meaning control actions are taken once outbreaks have already begun, allowing for damage to occur. Here we show that a data-driven model can effectively predict outbreaks, allowing us to optimize control strategies, targeting pests before outbreaks occur. Specifically, we explore empirical dynamic modeling paired with stochastic dynamic programming to keep insect populations within acceptable bounds. We show that this framework reduces outbreaks in several simulated and empirical scenarios. Our study provides a promising framework to reduce losses from pests.

Suggested Citation

  • Johnson, Bethany J. & Gomez, Marcella M. & Munch, Stephan B., 2025. "Empirical dynamic modeling for prediction and control of pest populations," Ecological Modelling, Elsevier, vol. 504(C).
  • Handle: RePEc:eee:ecomod:v:504:y:2025:i:c:s0304380025000675
    DOI: 10.1016/j.ecolmodel.2025.111081
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380025000675
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2025.111081?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Tonnang, Henri E.Z. & Hervé, Bisseleua D.B. & Biber-Freudenberger, Lisa & Salifu, Daisy & Subramanian, Sevgan & Ngowi, Valentine B. & Guimapi, Ritter Y.A. & Anani, Bruce & Kakmeni, Francois M.M. & Aff, 2017. "Advances in crop insect modelling methods—Towards a whole system approach," Ecological Modelling, Elsevier, vol. 354(C), pages 88-103.
    2. Muniz-Junior, Gilberto & Roque, Fábio de Oliveira & Pires, Aliny PF. & Guariento, Rafael D., 2023. "Are lower pesticide doses better? An evolutionary perspective on integrated pest management," Ecological Modelling, Elsevier, vol. 482(C).
    3. Rossini, Luca & Bono Rosselló, Nicolás & Benhamouche, Ouassim & Contarini, Mario & Speranza, Stefano & Garone, Emanuele, 2025. "A general DDE framework to describe insect populations: Why delays are so important?," Ecological Modelling, Elsevier, vol. 499(C).
    4. Williams, Perry J. & Kendall, William L., 2017. "A guide to multi-objective optimization for ecological problems with an application to cackling goose management," Ecological Modelling, Elsevier, vol. 343(C), pages 54-67.
    5. Yonow, Tania & Kriticos, Darren J. & Zalucki, Myron P. & Mc Donnell, Rory J. & Caron, Valerie, 2023. "Population modelling for pest management: A case study using a pest land snail and its fly parasitoid in Australia," Ecological Modelling, Elsevier, vol. 482(C).
    6. Corey J. A. Bradshaw & Boris Leroy & Céline Bellard & David Roiz & Céline Albert & Alice Fournier & Morgane Barbet-Massin & Jean-Michel Salles & Frédéric Simard & Franck Courchamp, 2016. "Massive yet grossly underestimated global costs of invasive insects," Nature Communications, Nature, vol. 7(1), pages 1-8, December.
    7. Toni Bakhtiar & Ihza Rizkia Fitri & Farida Hanum & Ali Kusnanto, 2022. "Mathematical Model of Pest Control Using Different Release Rates of Sterile Insects and Natural Enemies," Mathematics, MDPI, vol. 10(6), pages 1-18, March.
    8. Anis Ben Dhahbi & Yassine Chargui & Salah Mahmoud Boulaaras & Sana Ben Khalifa & Waleed Koko & Faisal Alresheedi, 2020. "Mathematical Modelling of the Sterile Insect Technique Using Different Release Strategies," Mathematical Problems in Engineering, Hindawi, vol. 2020, pages 1-9, November.
    9. Zhang, Wei & van der Werf, Wopke & Swinton, Scott M., 2010. "Spatially optimal habitat management for enhancing natural control of an invasive agricultural pest: Soybean aphid," Resource and Energy Economics, Elsevier, vol. 32(4), pages 551-565, November.
    10. Brias, Antoine & Munch, Stephan B., 2021. "Ecosystem based multi-species management using Empirical Dynamic Programming," Ecological Modelling, Elsevier, vol. 441(C).
    11. repec:plo:pone00:0018295 is not listed on IDEAS
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Brias, Antoine & Munch, Stephan B., 2021. "Ecosystem based multi-species management using Empirical Dynamic Programming," Ecological Modelling, Elsevier, vol. 441(C).
    2. Barton, Madeleine G. & Terblanche, John S. & Sinclair, Brent J., 2019. "Incorporating temperature and precipitation extremes into process-based models of African lepidoptera changes the predicted distribution under climate change," Ecological Modelling, Elsevier, vol. 394(C), pages 53-65.
    3. Chiadmi, Ines & Traoré, Sidnoma Abdoul Aziz & Salles, Jean-Michel, 2020. "Asian tiger mosquito far from home: Assessing the impact of invasive mosquitoes on the French Mediterranean littoral," Ecological Economics, Elsevier, vol. 178(C).
    4. Karner, Katrin & Schmid, Erwin & Schneider, Uwe A. & Mitter, Hermine, 2021. "Computing stochastic Pareto frontiers between economic and environmental goals for a semi-arid agricultural production region in Austria," Ecological Economics, Elsevier, vol. 185(C).
    5. Amaro, George & Fidelis, Elisangela Gomes & da Silva, Ricardo Siqueira & Marchioro, Cesar Augusto, 2023. "Effect of study area extent on the potential distribution of Species: A case study with models for Raoiella indica Hirst (Acari: Tenuipalpidae)," Ecological Modelling, Elsevier, vol. 483(C).
    6. Johnson, Bethany & Munch, Stephan B., 2022. "An empirical dynamic modeling framework for missing or irregular samples," Ecological Modelling, Elsevier, vol. 468(C).
    7. Cacho, Oscar J. & Hester, Susan M., 2022. "Modelling biocontrol of invasive insects: An application to European Wasp (Vespula germanica) in Australia," Ecological Modelling, Elsevier, vol. 467(C).
    8. Nunes, Pedro & Branco, Manuela & Franco, José Carlos & Santos, Mário, 2025. "Patterns, processes and scales shaping invasive pest species dynamics within agricultural landscapes: Modelling the spread of the African citrus psyllid in European lemon orchards," Agricultural Systems, Elsevier, vol. 226(C).
    9. Yun, Seong Do & Gramig, Benjamin M., 2014. "Dynamic Optimization of Ecosystem Services: A Comparative Analysis of Non-Spatial and Spatially-Explicit Models," 2014 Annual Meeting, July 27-29, 2014, Minneapolis, Minnesota 170450, Agricultural and Applied Economics Association.
    10. David A Roiz & Paulina Pontifes & Frédéric Jourdain & Christophe Diagne & Boris Leroy & Anne-Charlotte Vaissière & María José Tolsá-García & Jean-Michel Salles & Frédéric Simard & Franck Courchamp, 2024. "The rising global economic costs of invasive Aedes mosquitoes and Aedes-borne diseases," Post-Print hal-05006392, HAL.
    11. Korryn Bodner & Chris Brimacombe & Emily S Chenery & Ariel Greiner & Anne M McLeod & Stephanie R Penk & Juan S Vargas Soto, 2021. "Ten simple rules for tackling your first mathematical models: A guide for graduate students by graduate students," PLOS Computational Biology, Public Library of Science, vol. 17(1), pages 1-12, January.
    12. Danish A. Ahmed & Phillip J. Haubrock & Ross N. Cuthbert & Alok Bang & Ismael Soto & Paride Balzani & Ali Serhan Tarkan & Rafael L. Macêdo & Laís Carneiro & Thomas W. Bodey & Francisco J. Oficialdegui, 2023. "Recent advances in availability and synthesis of the economic costs of biological invasions," Post-Print hal-04148456, HAL.
    13. Antonín Kouba & Francisco J Oficialdegui & Ross N Cuthbert & Melina Kourantidou & Josie South & Elena Tricarico & Rodolphe E Gozlan & Franck Courchamp & Phillip J Haubrock, 2022. "Identifying economic costs and knowledge gaps of invasive aquatic crustaceans," Post-Print hal-03860579, HAL.
    14. Toni Bakhtiar & Ihza Rizkia Fitri & Farida Hanum & Ali Kusnanto, 2022. "Mathematical Model of Pest Control Using Different Release Rates of Sterile Insects and Natural Enemies," Mathematics, MDPI, vol. 10(6), pages 1-18, March.
    15. Neta, Ayana & Gafni, Roni & Elias, Hilit & Bar-Shmuel, Nitsan & Shaltiel-Harpaz, Liora & Morin, Efrat & Morin, Shai, 2021. "Decision support for pest management: Using field data for optimizing temperature-dependent population dynamics models," Ecological Modelling, Elsevier, vol. 440(C).
    16. Alexander H DeGolia & Elizabeth H T Hiroyasu & Sarah E Anderson, 2019. "Economic losses or environmental gains? Framing effects on public support for environmental management," PLOS ONE, Public Library of Science, vol. 14(7), pages 1-17, July.
    17. Thomas W Bodey & Zachary T Carter & Phillip J Haubrock & Ross N Cuthbert & Melissa J Welsh & Christophe Diagne & Franck Courchamp, 2022. "Building a synthesis of economic costs of biological invasions in New Zealand," Post-Print hal-03860523, HAL.
    18. Gu, Xi & Marsh, Thomas L., 2017. "Pesticide Substitution Under Maximum Residue Limits: Application to Hops Production," 2017 Annual Meeting, July 30-August 1, Chicago, Illinois 258572, Agricultural and Applied Economics Association.
    19. Francesca Della Rocca & Pietro Milanesi, 2022. "The New Dominator of the World: Modeling the Global Distribution of the Japanese Beetle under Land Use and Climate Change Scenarios," Land, MDPI, vol. 11(4), pages 1-17, April.
    20. Simanti Banerjee & Frans P. de Vries & Nick Hanley & Daan P. van Soest, 2014. "The Impact of Information Provision on Agglomeration Bonus Performance: An Experimental Study on Local Networks," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 96(4), pages 1009-1029.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:504:y:2025:i:c:s0304380025000675. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.