IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v501y2025ics0304380024004046.html
   My bibliography  Save this article

Global sensitivity analysis of the harmonized Lemna model

Author

Listed:
  • Guisnet, Chloé
  • Reichenberger, Stefan
  • García, Elena Alonso
  • Voss, Frank

Abstract

Mechanistic effect modelling is becoming increasingly important for environmental risk assessment in the framework of pesticide authorization. For instance, the European Food Safety Authority (EFSA) has judged the model for the aquatic macrophyte test organism Lemna as “ready for use.” Nevertheless, national regulatory authorities are still hesitant to accept mechanistic effect modelling studies.

Suggested Citation

  • Guisnet, Chloé & Reichenberger, Stefan & García, Elena Alonso & Voss, Frank, 2025. "Global sensitivity analysis of the harmonized Lemna model," Ecological Modelling, Elsevier, vol. 501(C).
  • Handle: RePEc:eee:ecomod:v:501:y:2025:i:c:s0304380024004046
    DOI: 10.1016/j.ecolmodel.2024.111016
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380024004046
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2024.111016?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Jager, Tjalling & Goussen, Benoit & Gergs, André, 2023. "Using the standard DEB animal model for toxicokinetic-toxicodynamic analysis," Ecological Modelling, Elsevier, vol. 475(C).
    2. Schmitt, Walter & Bruns, Eric & Dollinger, Margit & Sowig, Peter, 2013. "Mechanistic TK/TD-model simulating the effect of growth inhibitors on Lemna populations," Ecological Modelling, Elsevier, vol. 255(C), pages 1-10.
    3. Ciric, C. & Ciffroy, P. & Charles, S., 2012. "Use of sensitivity analysis to identify influential and non-influential parameters within an aquatic ecosystem model," Ecological Modelling, Elsevier, vol. 246(C), pages 119-130.
    4. Shang, Xiaobing & Wang, Lipeng & Fang, Hai & Lu, Lingyun & Zhang, Zhi, 2024. "Active Learning of Ensemble Polynomial Chaos Expansion Method for Global Sensitivity Analysis," Reliability Engineering and System Safety, Elsevier, vol. 249(C).
    5. Andrea Saltelli, 2002. "Sensitivity Analysis for Importance Assessment," Risk Analysis, John Wiley & Sons, vol. 22(3), pages 579-590, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Makam, Vaishno Devi & Millossovich, Pietro & Tsanakas, Andreas, 2021. "Sensitivity analysis with χ2-divergences," Insurance: Mathematics and Economics, Elsevier, vol. 100(C), pages 372-383.
    2. S. Cucurachi & E. Borgonovo & R. Heijungs, 2016. "A Protocol for the Global Sensitivity Analysis of Impact Assessment Models in Life Cycle Assessment," Risk Analysis, John Wiley & Sons, vol. 36(2), pages 357-377, February.
    3. Kunz, Nathan & Chesney, Thomas & Trautrims, Alexander & Gold, Stefan, 2023. "Adoption and transferability of joint interventions to fight modern slavery in food supply chains," International Journal of Production Economics, Elsevier, vol. 258(C).
    4. Yun, Wanying & Lu, Zhenzhou & Feng, Kaixuan & Li, Luyi, 2019. "An elaborate algorithm for analyzing the Borgonovo moment-independent sensitivity by replacing the probability density function estimation with the probability estimation," Reliability Engineering and System Safety, Elsevier, vol. 189(C), pages 99-108.
    5. Gonnet, Gaston H. & Stewart, John & Lafleur, Joseph & Keith, Stephen & McLellan, Mark & Jiang-Gorsline, David & Snider, Tim, 2021. "Analysis of feature influence on Covid-19 Death Rate Per Country Using a Novel Orthogonalization Technique," MetaArXiv 4kw2n, Center for Open Science.
    6. Abdur Rahim Hamidi & Jiangwei Wang & Shiyao Guo & Zhongping Zeng, 2020. "Flood vulnerability assessment using MOVE framework: a case study of the northern part of district Peshawar, Pakistan," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 101(2), pages 385-408, March.
    7. Kamoonpuri, Sana Zehra & Sengar, Anita, 2023. "Hi, May AI help you? An analysis of the barriers impeding the implementation and use of artificial intelligence-enabled virtual assistants in retail," Journal of Retailing and Consumer Services, Elsevier, vol. 72(C).
    8. Chen, Yaqian & Nakao, Hiroya & Kang, Yanmei, 2024. "Emergence of pathological beta oscillation and its uncertainty quantification in a time-delayed feedback Parkinsonian model," Chaos, Solitons & Fractals, Elsevier, vol. 185(C).
    9. Li, Haihe & Wang, Pan & Huang, Xiaoyu & Zhang, Zheng & Zhou, Changcong & Yue, Zhufeng, 2021. "Vine copula-based parametric sensitivity analysis of failure probability-based importance measure in the presence of multidimensional dependencies," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    10. Emanuele Borgonovo, 2006. "Measuring Uncertainty Importance: Investigation and Comparison of Alternative Approaches," Risk Analysis, John Wiley & Sons, vol. 26(5), pages 1349-1361, October.
    11. Jung, WoongHee & Taflanidis, Alexandros A., 2023. "Efficient global sensitivity analysis for high-dimensional outputs combining data-driven probability models and dimensionality reduction," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    12. Paleari, Livia & Movedi, Ermes & Zoli, Michele & Burato, Andrea & Cecconi, Irene & Errahouly, Jabir & Pecollo, Eleonora & Sorvillo, Carla & Confalonieri, Roberto, 2021. "Sensitivity analysis using Morris: Just screening or an effective ranking method?," Ecological Modelling, Elsevier, vol. 455(C).
    13. Aguirre-Zapata, Estefania & Alvarez, Hernan & Lema-Perez, Laura & di Sciascio, Fernando & Amicarelli, Adriana N., 2024. "Interpretability in the modeling spectrum: A conceptual framework and a quantification index," Ecological Modelling, Elsevier, vol. 498(C).
    14. Abdullah Asilkalkan & Asli Z. Dag & Serhat Simsek & Osman T. Aydas & Eyyub Y. Kibis & Dursun Delen, 2025. "Streamlining patients’ opioid prescription dosage: an explanatory bayesian model," Annals of Operations Research, Springer, vol. 347(2), pages 889-912, April.
    15. Mohammed H. Alharbi & Fawaz K. Alalhareth & Mahmoud A. Ibrahim, 2023. "Analyzing the Dynamics of a Periodic Typhoid Fever Transmission Model with Imperfect Vaccination," Mathematics, MDPI, vol. 11(15), pages 1-26, July.
    16. Liu, Xing & Ferrario, Elisa & Zio, Enrico, 2019. "Identifying resilient-important elements in interdependent critical infrastructures by sensitivity analysis," Reliability Engineering and System Safety, Elsevier, vol. 189(C), pages 423-434.
    17. WoongHee Jung & Aikaterini P. Kyprioti & Ehsan Adeli & Alexandros A. Taflanidis, 2023. "Exploring the sensitivity of probabilistic surge estimates to forecast errors," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 115(2), pages 1371-1409, January.
    18. Han, Jen-Yu & Li, Sin-Yi & Chen, Yi-Chien, 2025. "Estimation of solar photovoltaic efficiency under the urban heat island effect," Renewable Energy, Elsevier, vol. 242(C).
    19. Chen, Chuqi & Li, Zheng & Li, Xiaoyu & Wang, Linna & Zeng, Wenjie, 2025. "A dynamic performance assessment of coordinated control system of small pressurized water reactor based on uncertainty quantification and sensitivity analysis," Reliability Engineering and System Safety, Elsevier, vol. 256(C).
    20. Hanthanan Arachchilage, Kalpana & Hussaini, Mohammed Yousuff, 2021. "Ranking non-pharmaceutical interventions against Covid-19 global pandemic using global sensitivity analysis—Effect on number of deaths," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:501:y:2025:i:c:s0304380024004046. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.