IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v501y2025ics0304380024003636.html
   My bibliography  Save this article

Estimating landscape intensity through farming practices: An integrative and flexible approach to modelling farming intensity from field to landscape

Author

Listed:
  • Maudet, Simon
  • Brusse, Théo
  • Poss, Benoit
  • Caro, Gaël
  • Marrec, Ronan

Abstract

Landscape intensity is a major driver of biodiversity and ecosystem functioning in agricultural landscapes, and is often used to inform environmental quality. It is commonly described by land cover alone, as farming practices are assumed to be correlated with crop types. Despite their potential impact on field quality, distribution of farming practices at landscape scale is poorly understood, due to the lack of methods for summarizing the numerous farming practices at field and landscape levels.

Suggested Citation

  • Maudet, Simon & Brusse, Théo & Poss, Benoit & Caro, Gaël & Marrec, Ronan, 2025. "Estimating landscape intensity through farming practices: An integrative and flexible approach to modelling farming intensity from field to landscape," Ecological Modelling, Elsevier, vol. 501(C).
  • Handle: RePEc:eee:ecomod:v:501:y:2025:i:c:s0304380024003636
    DOI: 10.1016/j.ecolmodel.2024.110975
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380024003636
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2024.110975?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cong, Rong-Gang & Smith, Henrik G. & Olsson, Ola & Brady, Mark, 2014. "Managing ecosystem services for agriculture: Will landscape-scale management pay?," Ecological Economics, Elsevier, vol. 99(C), pages 53-62.
    2. Avrum Shriar, 2005. "Determinants of Agricultural Intensity Index “Scores” in a Frontier Region: An Analysis of Data from Northern Guatemala," Agriculture and Human Values, Springer;The Agriculture, Food, & Human Values Society (AFHVS), vol. 22(4), pages 395-410, December.
    3. Paulus, Anne & Hagemann, Nina & Baaken, Marieke C. & Roilo, Stephanie & Alarcón-Segura, Viviana & Cord, Anna F. & Beckmann, Michael, 2022. "Landscape context and farm characteristics are key to farmers' adoption of agri-environmental schemes," Land Use Policy, Elsevier, vol. 121(C).
    4. Kuemmerle, Tobias & Erb, Karlheinz & Meyfroidt, Patrick & Müller, Daniel & Verburg, Peter H & Estel, Stephan & Haberl, Helmut & Hostert, Patrick & Jepsen, Martin R. & Kastner, Thomas & Levers, Christi, 2013. "Challenges and opportunities in mapping land use intensity globally," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 5(5), pages 484-493.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Stephanie D. Maier & Jan Paul Lindner & Javier Francisco, 2019. "Conceptual Framework for Biodiversity Assessments in Global Value Chains," Sustainability, MDPI, vol. 11(7), pages 1-34, March.
    2. Li Yu & Zhanqi Wang & Hongwei Zhang & Chao Wei, 2020. "Spatial-Temporal Differentiation Analysis of Agricultural Land Use Intensity and Its Driving Factors at the County Scale: A Case Study in Hubei Province, China," IJERPH, MDPI, vol. 17(18), pages 1-18, September.
    3. Kuhfuss, Laure & Préget, Raphaële & Thoyer, Sophie & de Vries, Frans P. & Hanley, Nick, 2022. "Enhancing spatial coordination in payment for ecosystem services schemes with non-pecuniary preferences," Ecological Economics, Elsevier, vol. 192(C).
    4. Li, Xiaoliang & Wu, Kening & Yang, Qijun & Hao, Shiheng & Feng, Zhe & Ma, Jinliang, 2023. "Quantitative assessment of cultivated land use intensity in Heilongjiang Province, China, 2001–2015," Land Use Policy, Elsevier, vol. 125(C).
    5. Song, Min & Yi, Luping & Hu, Can, 2023. "Building up a compensation-oriented transferable development right mechanism: A theoretical and empirical exploration in Hubei, China," Technological Forecasting and Social Change, Elsevier, vol. 187(C).
    6. Marek Zieliński & Wioletta Wrzaszcz & Jolanta Sobierajewska & Marcin Adamski, 2024. "Development and Effects of Organic Farms in Poland, Taking into Account Their Location in Areas Facing Natural or Other Specific Constraints," Agriculture, MDPI, vol. 14(2), pages 1-17, February.
    7. Xiao-Chen Yuan & Bao-Jun Tang & Yi-Ming Wei & Xiao-Jie Liang & Hao Yu & Ju-Liang Jin, 2015. "China’s regional drought risk under climate change: a two-stage process assessment approach," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 76(1), pages 667-684, March.
    8. Lea Schwengbeck & Lisanne Hölting & Felix Witing, 2023. "Modeling Climate Regulation of Arable Soils in Northern Saxony under the Influence of Climate Change and Management Practices," Sustainability, MDPI, vol. 15(14), pages 1-17, July.
    9. Liu, Ying & Feng, Qisheng & Wang, Chenggang & Tang, Zeng, 2018. "A risk-based model for grassland management using MODIS data: The case of Gannan region, China," Land Use Policy, Elsevier, vol. 72(C), pages 461-469.
    10. Bareille, Francois & Boussard, Hugues & Thenail, Claudine, 2020. "Productive ecosystem services and collective management: Lessons from a realistic landscape model," Ecological Economics, Elsevier, vol. 169(C).
    11. Markova-Nenova, Nonka & Wätzold, Frank & Sturm, Astrid, 2020. "Distributional Impacts of Cost-effective Spatially Homogeneous and Regionalized Agri-Environment Payments. A case study of a Grassland Scheme in Saxony, Germany," MPRA Paper 104759, University Library of Munich, Germany.
    12. Qin Liu & Tiange Shi, 2019. "Spatiotemporal Differentiation and the Factors of Ecological Vulnerability in the Toutun River Basin Based on Remote Sensing Data," Sustainability, MDPI, vol. 11(15), pages 1-19, August.
    13. Matteo Zavalloni & Meri Raggi & Davide Viaggi, 2019. "Agri-environmental Policies and Public Goods: An Assessment of Coalition Incentives and Minimum Participation Rules," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 72(4), pages 1023-1040, April.
    14. Zhao, Mingyue & Peng, Jian & Liu, Yuanxin & Li, Tianyi & Wang, Yanglin, 2018. "Mapping Watershed-Level Ecosystem Service Bundles in the Pearl River Delta, China," Ecological Economics, Elsevier, vol. 152(C), pages 106-117.
    15. Ilaria Zambon & Agostino Ferrara & Rosanna Salvia & Enrico Maria Mosconi & Luigi Fici & Rosario Turco & Luca Salvati, 2018. "Rural Districts between Urbanization and Land Abandonment: Undermining Long-Term Changes in Mediterranean Landscapes," Sustainability, MDPI, vol. 10(4), pages 1-17, April.
    16. Francois Bareille & Matteo Zavalloni & Meri Raggi & Davide Viaggi, 2021. "Cooperative Management of Ecosystem Services: Coalition Formation, Landscape Structure and Policies," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 79(2), pages 323-356, June.
    17. Wittstock, Felix & Paulus, Anne & Beckmann, Michael & Hagemann, Nina & Baaken, Marieke Cornelia, 2022. "Understanding farmers’ decision-making on agri-environmental schemes: A case study from Saxony, Germany," Land Use Policy, Elsevier, vol. 122(C).
    18. Bayarmaa Byambaa & Walter T. de Vries, 2021. "The Production of Pastoral Space: Modeling Spatial Occupation of Grazing Land for Environmental Impact Assessment Using Structural Equation Modeling," Land, MDPI, vol. 10(2), pages 1-18, February.
    19. Zhang, Kangjie & Li, Fuduo & Li, Huanli & Yin, Changbin, 2024. "Revealing urban residents’ intention to pay for the greening of farmland in the urban fringe by extending the theory of planned behavior: Insights from payment for ecosystem services," Land Use Policy, Elsevier, vol. 141(C).
    20. Baojun Tang & Yujie Hu & Huanan Li & Dongwei Yang & Jiangpeng Liu, 2016. "Research on comprehensive carrying capacity of Beijing–Tianjin–Hebei region based on state-space method," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 84(1), pages 113-128, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:501:y:2025:i:c:s0304380024003636. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.