IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v498y2024ics0304380024002886.html
   My bibliography  Save this article

Models vetted against prediction error and parameter sensitivity standards can credibly evaluate ecosystem management options

Author

Listed:
  • Haas, Timothy C.

Abstract

A new standard for assessing model credibility is developed. This standard consists of parameter estimation, prediction error assessment, and a parameter sensitivity analysis that is driven by outside individuals who are skeptical of the model’s credibility (hereafter, skeptics). Ecological/environmental models that have a one-step-ahead prediction error rate that is better than naive forecasting — and are not excessively sensitive to small changes in their parameter values are said here to be vetted. A procedure is described that can perform this assessment on any model being evaluated for possible participation in an ecosystem management decision. Uncertainty surrounding the model’s ability to predict future values of its output variables and in the estimates of all of its parameters should be part of any effort to vett a model. The vetting procedure described herein, Prediction Error Rate-Deterministic Sensitivity Analysis (PER-DSA), incorporates these two aspects of model uncertainty. DSA in particular, requires participation by skeptics and is the reason why a successful DSA gives a model sufficient credibility to have a voice in ecosystem management decision making. But these models need to be stochastic and represent the mechanistic processes of the system being modeled. For such models, performing a PER-DSA can be computationally expensive. A cluster computing algorithm to speed-up these computations is described as one way to answer this challenge. This new standard is illustrated through a PER-DSA of a population dynamics model of South African rhinoceros (Ceratotherium simum simum).

Suggested Citation

  • Haas, Timothy C., 2024. "Models vetted against prediction error and parameter sensitivity standards can credibly evaluate ecosystem management options," Ecological Modelling, Elsevier, vol. 498(C).
  • Handle: RePEc:eee:ecomod:v:498:y:2024:i:c:s0304380024002886
    DOI: 10.1016/j.ecolmodel.2024.110900
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380024002886
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2024.110900?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Diederik Strubbe & Laura Jiménez & A. Márcia Barbosa & Amy J. S. Davis & Luc Lens & Carsten Rahbek, 2023. "Mechanistic models project bird invasions with accuracy," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    2. Hansen, Bruce E., 2006. "Interval forecasts and parameter uncertainty," Journal of Econometrics, Elsevier, vol. 135(1-2), pages 377-398.
    3. Sam M Ferreira & Judith M Botha & Megan C Emmett, 2012. "Anthropogenic Influences on Conservation Values of White Rhinoceros," PLOS ONE, Public Library of Science, vol. 7(9), pages 1-14, September.
    4. Timothy Haas, 2020. "Developing political-ecological theory: The need for many-task computing," PLOS ONE, Public Library of Science, vol. 15(11), pages 1-26, November.
    5. Schuwirth, Nele & Borgwardt, Florian & Domisch, Sami & Friedrichs, Martin & Kattwinkel, Mira & Kneis, David & Kuemmerlen, Mathias & Langhans, Simone D. & Martínez-López, Javier & Vermeiren, Peter, 2019. "How to make ecological models useful for environmental management," Ecological Modelling, Elsevier, vol. 411(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Brias, Antoine & Munch, Stephan B., 2021. "Ecosystem based multi-species management using Empirical Dynamic Programming," Ecological Modelling, Elsevier, vol. 441(C).
    2. Mehmet Balcilar & Rangan Gupta & Stephen M. Miller, 2015. "The out-of-sample forecasting performance of nonlinear models of regional housing prices in the US," Applied Economics, Taylor & Francis Journals, vol. 47(22), pages 2259-2277, May.
    3. Carl Lonnbark, 2010. "A corrected Value-at-Risk predictor," Applied Economics Letters, Taylor & Francis Journals, vol. 17(12), pages 1193-1196.
    4. Lee, Yun Shin & Scholtes, Stefan, 2014. "Empirical prediction intervals revisited," International Journal of Forecasting, Elsevier, vol. 30(2), pages 217-234.
    5. Mosai, Alseno K. & Tokwana, Bontle C. & Tutu, Hlanganani, 2022. "Computer simulation modelling of the simultaneous adsorption of Cd, Cu and Cr from aqueous solutions by agricultural clay soil: A PHREEQC geochemical modelling code coupled to parameter estimation (PE," Ecological Modelling, Elsevier, vol. 465(C).
    6. Mergani A. Khairalla & Xu Ning & Nashat T. AL-Jallad & Musaab O. El-Faroug, 2018. "Short-Term Forecasting for Energy Consumption through Stacking Heterogeneous Ensemble Learning Model," Energies, MDPI, vol. 11(6), pages 1-21, June.
    7. Di Pirro, E. & Sallustio, L. & Capotorti, G. & Marchetti, M. & Lasserre, B., 2021. "A scenario-based approach to tackle trade-offs between biodiversity conservation and land use pressure in Central Italy," Ecological Modelling, Elsevier, vol. 448(C).
    8. Dimitris N. Politis & Dimitrios D. Thomakos, 2007. "NoVaS Transformations: Flexible Inference for Volatility Forecasting," Working Paper series 44_07, Rimini Centre for Economic Analysis.
    9. Mihail Yanchev, 2025. "Interval, Quantile and Density Forecasts," Economic Alternatives, University of National and World Economy, Sofia, Bulgaria, issue 1, pages 109-129, March.
    10. Haag, Fridolin & Chennu, Arjun, 2023. "Assessing whether decisions are more sensitive to preference or prediction uncertainty with a value of information approach," Omega, Elsevier, vol. 121(C).
    11. Sutton, G.F. & Martin, G.D., 2022. "Testing MaxEnt model performance in a novel geographic region using an intentionally introduced insect," Ecological Modelling, Elsevier, vol. 473(C).
    12. Callesen, I. & Magnussen, A., 2021. "TransparC2U–A two-pool, pedology oriented forest soil carbon simulation model aimed at user investigations of multiple uncertainties," Ecological Modelling, Elsevier, vol. 453(C).
    13. Federico Bassetti & Roberto Casarin & Francesco Ravazzolo, 2019. "Density Forecasting," BEMPS - Bozen Economics & Management Paper Series BEMPS59, Faculty of Economics and Management at the Free University of Bozen.
    14. Lönnbark, Carl, 2013. "On the role of the estimation error in prediction of expected shortfall," Journal of Banking & Finance, Elsevier, vol. 37(3), pages 847-853.
    15. Ying Chen & Binbin Lu & Chongyu Xu & Xingwei Chen & Meibing Liu & Lu Gao & Haijun Deng, 2022. "Uncertainty Evaluation of Best Management Practice Effectiveness Based on the AnnAGNPS Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(4), pages 1307-1321, March.
    16. dos Anjos, Lucas & Weber, Igor Daniel & Godoy, Wesley Augusto Conde, 2023. "Modelling the biocontrol of Spodoptera frugiperda: A mechanistic approach considering Bt crops and oviposition behaviour," Ecological Modelling, Elsevier, vol. 484(C).
    17. Lötjönen, Sanna & Ollikainen, Markku & Kotamäki, Niina & Huttunen, Markus & Huttunen, Inese, 2021. "Nutrient load compensation as a means of maintaining the good ecological status of surface waters," Ecological Economics, Elsevier, vol. 188(C).
    18. Sam M Ferreira & Cathy Greaver & Grant A Knight & Mike H Knight & Izak P J Smit & Danie Pienaar, 2015. "Disruption of Rhino Demography by Poachers May Lead to Population Declines in Kruger National Park, South Africa," PLOS ONE, Public Library of Science, vol. 10(6), pages 1-18, June.
    19. Palamara, Gian Marco & Dennis, Stuart R. & Haenggi, Corinne & Schuwirth, Nele & Reichert, Peter, 2022. "Investigating the effect of pesticides on Daphnia population dynamics by inferring structure and parameters of a stochastic model," Ecological Modelling, Elsevier, vol. 472(C).
    20. Paulin, M.J. & Rutgers, M. & de Nijs, T. & Hendriks, A.J. & Koopman, K.R. & Van Buul, T. & Frambach, M. & Sardano, G. & Breure, A.M., 2020. "Integration of local knowledge and data for spatially quantifying ecosystem services in the Hoeksche Waard, the Netherlands," Ecological Modelling, Elsevier, vol. 438(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:498:y:2024:i:c:s0304380024002886. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.