IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v481y2023ics0304380023000819.html
   My bibliography  Save this article

A comparison of machine learning and statistical species distribution models: Quantifying overfitting supports model interpretation

Author

Listed:
  • Chollet Ramampiandra, Emma
  • Scheidegger, Andreas
  • Wydler, Jonas
  • Schuwirth, Nele

Abstract

Species distribution models are commonly applied to predict species responses to environmental conditions. A wide variety of models with different properties exist that vary in complexity, which affects their predictive performance and interpretability. Machine learning algorithms are increasingly used because they are capable to capture complex relationships and are often better in prediction. However, to inform environmental management, it is important that a model predicts well for the right reasons. It remains a challenge to select a model with a reasonable level of complexity that captures the true relationship between the response and explanatory variables as good as possible rather than fitting to the noise in the data.

Suggested Citation

  • Chollet Ramampiandra, Emma & Scheidegger, Andreas & Wydler, Jonas & Schuwirth, Nele, 2023. "A comparison of machine learning and statistical species distribution models: Quantifying overfitting supports model interpretation," Ecological Modelling, Elsevier, vol. 481(C).
  • Handle: RePEc:eee:ecomod:v:481:y:2023:i:c:s0304380023000819
    DOI: 10.1016/j.ecolmodel.2023.110353
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380023000819
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2023.110353?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Vermeiren, Peter & Reichert, Peter & Schuwirth, Nele, 2020. "Integrating uncertain prior knowledge regarding ecological preferences into multi-species distribution models: Effects of model complexity on predictive performance," Ecological Modelling, Elsevier, vol. 420(C).
    2. Schuwirth, Nele & Borgwardt, Florian & Domisch, Sami & Friedrichs, Martin & Kattwinkel, Mira & Kneis, David & Kuemmerlen, Mathias & Langhans, Simone D. & Martínez-López, Javier & Vermeiren, Peter, 2019. "How to make ecological models useful for environmental management," Ecological Modelling, Elsevier, vol. 411(C).
    3. Austin, Mike, 2007. "Species distribution models and ecological theory: A critical assessment and some possible new approaches," Ecological Modelling, Elsevier, vol. 200(1), pages 1-19.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Caradima, Bogdan & Scheidegger, Andreas & Brodersen, Jakob & Schuwirth, Nele, 2021. "Bridging mechanistic conceptual models and statistical species distribution models of riverine fish," Ecological Modelling, Elsevier, vol. 457(C).
    2. Brias, Antoine & Munch, Stephan B., 2021. "Ecosystem based multi-species management using Empirical Dynamic Programming," Ecological Modelling, Elsevier, vol. 441(C).
    3. Václavík, Tomáš & Meentemeyer, Ross K., 2009. "Invasive species distribution modeling (iSDM): Are absence data and dispersal constraints needed to predict actual distributions?," Ecological Modelling, Elsevier, vol. 220(23), pages 3248-3258.
    4. Muñoz-Mas, Rafael & Vezza, Paolo & Alcaraz-Hernández, Juan Diego & Martínez-Capel, Francisco, 2016. "Risk of invasion predicted with support vector machines: A case study on northern pike (Esox Lucius, L.) and bleak (Alburnus alburnus, L.)," Ecological Modelling, Elsevier, vol. 342(C), pages 123-134.
    5. Mosai, Alseno K. & Tokwana, Bontle C. & Tutu, Hlanganani, 2022. "Computer simulation modelling of the simultaneous adsorption of Cd, Cu and Cr from aqueous solutions by agricultural clay soil: A PHREEQC geochemical modelling code coupled to parameter estimation (PE," Ecological Modelling, Elsevier, vol. 465(C).
    6. Meineri, Eric & Dahlberg, C. Johan & Hylander, Kristoffer, 2015. "Using Gaussian Bayesian Networks to disentangle direct and indirect associations between landscape physiography, environmental variables and species distribution," Ecological Modelling, Elsevier, vol. 313(C), pages 127-136.
    7. Marmion, Mathieu & Luoto, Miska & Heikkinen, Risto K. & Thuiller, Wilfried, 2009. "The performance of state-of-the-art modelling techniques depends on geographical distribution of species," Ecological Modelling, Elsevier, vol. 220(24), pages 3512-3520.
    8. Kaiping Wang & Weiqi Wang & Niyi Zha & Yue Feng & Chenlan Qiu & Yunlu Zhang & Jia Ma & Rui Zhang, 2022. "Spatially Heterogeneity Response of Critical Ecosystem Service Capacity to Address Regional Development Risks to Rapid Urbanization: The Case of Beijing-Tianjin-Hebei Urban Agglomeration in China," Sustainability, MDPI, vol. 14(12), pages 1-21, June.
    9. Sellami, Mohamed Habib & Sifaoui, Mohamed Salah, 2008. "Modelling of heat and mass transfer inside a traditional oasis: Experimental validation," Ecological Modelling, Elsevier, vol. 210(1), pages 144-154.
    10. Di Traglia, Mario & Attorre, Fabio & Francesconi, Fabio & Valenti, Roberto & Vitale, Marcello, 2011. "Is cellular automata algorithm able to predict the future dynamical shifts of tree species in Italy under climate change scenarios? A methodological approach," Ecological Modelling, Elsevier, vol. 222(4), pages 925-934.
    11. Mouton, Ans M. & De Baets, Bernard & Goethals, Peter L.M., 2010. "Ecological relevance of performance criteria for species distribution models," Ecological Modelling, Elsevier, vol. 221(16), pages 1995-2002.
    12. Aertsen, Wim & Kint, Vincent & van Orshoven, Jos & Özkan, Kürşad & Muys, Bart, 2010. "Comparison and ranking of different modelling techniques for prediction of site index in Mediterranean mountain forests," Ecological Modelling, Elsevier, vol. 221(8), pages 1119-1130.
    13. Lyndsie S Wszola & Victoria L Simonsen & Erica F Stuber & Caitlyn R Gillespie & Lindsey N Messinger & Karie L Decker & Jeffrey J Lusk & Christopher F Jorgensen & Andrew A Bishop & Joseph J Fontaine, 2017. "Translating statistical species-habitat models to interactive decision support tools," PLOS ONE, Public Library of Science, vol. 12(12), pages 1-13, December.
    14. Di Pirro, E. & Sallustio, L. & Capotorti, G. & Marchetti, M. & Lasserre, B., 2021. "A scenario-based approach to tackle trade-offs between biodiversity conservation and land use pressure in Central Italy," Ecological Modelling, Elsevier, vol. 448(C).
    15. Basille, Mathieu & Calenge, Clément & Marboutin, Éric & Andersen, Reidar & Gaillard, Jean-Michel, 2008. "Assessing habitat selection using multivariate statistics: Some refinements of the ecological-niche factor analysis," Ecological Modelling, Elsevier, vol. 211(1), pages 233-240.
    16. Rufino, Marta M. & Albouy, Camille & Brind'Amour, Anik, 2021. "Which spatial interpolators I should use? A case study applying to marine species," Ecological Modelling, Elsevier, vol. 449(C).
    17. Mouton, Ans M. & De Baets, Bernard & Van Broekhoven, Ester & Goethals, Peter L.M., 2009. "Prevalence-adjusted optimisation of fuzzy models for species distribution," Ecological Modelling, Elsevier, vol. 220(15), pages 1776-1786.
    18. Stoklosa, Jakub & Huang, Yih-Huei & Furlan, Elise & Hwang, Wen-Han, 2016. "On quadratic logistic regression models when predictor variables are subject to measurement error," Computational Statistics & Data Analysis, Elsevier, vol. 95(C), pages 109-121.
    19. Suárez-Seoane, Susana & García de la Morena, Eladio L. & Morales Prieto, Manuel B. & Osborne, Patrick E. & de Juana, Eduardo, 2008. "Maximum entropy niche-based modelling of seasonal changes in little bustard (Tetrax tetrax) distribution," Ecological Modelling, Elsevier, vol. 219(1), pages 17-29.
    20. Hopkins, Robert L. & Burr, Brooks M., 2009. "Modeling freshwater fish distributions using multiscale landscape data: A case study of six narrow range endemics," Ecological Modelling, Elsevier, vol. 220(17), pages 2024-2034.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:481:y:2023:i:c:s0304380023000819. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.