IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0310044.html
   My bibliography  Save this article

Analysis of influencing factors of traffic accidents on urban ring road based on the SVM model optimized by Bayesian method

Author

Listed:
  • Lei Wang
  • Mei Xiao
  • Jiliang Lv
  • Jian Liu

Abstract

Based on small scale sample of accident data from specific scenarios, fully exploring the potential influencing factors of the severity of traffic accidents has become a key and effective research method. In order to analyze the factors mentioned above in the scenario of urban ring roads, this paper collected data records of 1250 traffic accidents involving different severity on urban ring road of a central city in northwest China in the past 3 years. Firstly, the Support Vector Machine (SVM) model of non-parametric method is utilized to analyze the data above, and three kernel functions of linear, inhomogeneous polynomial and Gaussian radial basis are constructed respectively. Considering comprehensively 16 potential influencing factors covering the driver-vehicle-road-environment integrated system, the SVM models of above three kernel functions are verified, accuracy reaches 0.771 and F1 reaches 0.841. Then, Bayesian Optimization (BO), Grids Search (GS) and Rough Set (RS) are utilized as optimizer to adjust the parameters of Gaussian radial basis function SVM model, the performance of BO-SVM is further improved and reaches the optimum, with an average accuracy of 0.875 on the test set and a F1 of 0.886, completely outperforming the benchmark models of GS-SVM, RS-SVM, Bilayer-LSTM and BP. Finally, the sensitivity analysis method is utilized to quantify the sensitivity of the potential influencing factors to the severity of road accidents, and the backward selection method is utilized to screen the core influencing factors that influence the severity of accident, concluded that core influencing factors are age, driving mileage and vehicle type. This paper will provide reference for the analysis of the significant influencing factors for road accidents severity, and to provide theoretical support for the precise formulation of accident improvement strategies.

Suggested Citation

  • Lei Wang & Mei Xiao & Jiliang Lv & Jian Liu, 2024. "Analysis of influencing factors of traffic accidents on urban ring road based on the SVM model optimized by Bayesian method," PLOS ONE, Public Library of Science, vol. 19(9), pages 1-15, September.
  • Handle: RePEc:plo:pone00:0310044
    DOI: 10.1371/journal.pone.0310044
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0310044
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0310044&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0310044?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Chollet Ramampiandra, Emma & Scheidegger, Andreas & Wydler, Jonas & Schuwirth, Nele, 2023. "A comparison of machine learning and statistical species distribution models: Quantifying overfitting supports model interpretation," Ecological Modelling, Elsevier, vol. 481(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.

      More about this item

      Statistics

      Access and download statistics

      Corrections

      All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0310044. See general information about how to correct material in RePEc.

      If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

      If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

      If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

      For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

      Please note that corrections may take a couple of weeks to filter through the various RePEc services.

      IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.