IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v489y2024ics0304380023003332.html
   My bibliography  Save this article

Predicting restoration and aquaculture potential of eastern oysters through an eco-physiological mechanistic model

Author

Listed:
  • Lavaud, Romain
  • La Peyre, Megan K
  • Couvillion, Brady
  • Beseres Pollack, Jennifer
  • Brown, Vincent
  • Palmer, Terence A
  • Keim, Barry

Abstract

A simple, non-negotiable truth of ensuring success in the restoration of ecological engineers (EE) and the functions they support is the need for the focal species to survive, grow and reproduce. Using mechanistic modeling, such as a dynamic energy budget (DEB), to map an EE's fundamental niche supports restoration and management predictive of EE resilience under current and future conditions. One EE, the eastern oyster, Crassostrea virginica, provides critical estuarine habitat and supports a valuable fishery across the northern Gulf of Mexico. Recent declines in oyster populations in this region from anthropogenic activities and extreme events have led to significant efforts to restore wild, self-sustaining broodstock reefs, and develop off-bottom aquaculture. To explore potential outcomes for oyster restoration and aquaculture development, we used an individual bioenergetic model based on DEB theory to derive an aquaculture index, based on survival and time to market size, and a restoration index, based on survival and reproductive output. The model was run across six major Texas and Louisiana estuaries under current (2014–2020) and future (2041–2050) projected environmental conditions. Aquaculture scores using daily averaged current conditions reproduce an observed gradient of oyster growth success increasing from the upper estuary to lower estuary (Texas) or offshore areas (Louisiana), with lower variation occurring in Texas estuaries. Restoration scores under daily averaged current conditions showed similar trends with more variability than the aquaculture index due to spawning potential, which is important for reef sustainability. In general, Louisiana estuaries showed higher growth rates and reproduction than Texas estuaries, but due to the higher variability and more frequent extremes in salinity and temperature, Louisiana estuaries were more likely to experience mortal conditions in any given year, as compared to Texas estuaries. Comparison between current and future conditions indicated that oyster aquaculture and restoration potential in presently occupied areas might decrease in the future; however, the spatial resolution of currently available climate model outputs within coastal and estuarine areas limits planning information. Addressing this gap represents a necessary improvement to better evaluate the physiological response of EE to future conditions, especially since most aquaculture and restoration developments are likely to occur close to the coastline. Finally, this work demonstrates the potential of mechanistic modeling to inform future planning under environmental conditions not currently within the realized niche of EE.

Suggested Citation

  • Lavaud, Romain & La Peyre, Megan K & Couvillion, Brady & Beseres Pollack, Jennifer & Brown, Vincent & Palmer, Terence A & Keim, Barry, 2024. "Predicting restoration and aquaculture potential of eastern oysters through an eco-physiological mechanistic model," Ecological Modelling, Elsevier, vol. 489(C).
  • Handle: RePEc:eee:ecomod:v:489:y:2024:i:c:s0304380023003332
    DOI: 10.1016/j.ecolmodel.2023.110603
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380023003332
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2023.110603?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:489:y:2024:i:c:s0304380023003332. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.