IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v464y2022ics0304380021003616.html
   My bibliography  Save this article

Exploring the ecosystem resilience concept with land surface model scenarios

Author

Listed:
  • Seixas, Hugo Tameirão
  • Brunsell, Nathaniel A.
  • Moraes, Elisabete Caria
  • de Oliveira, Gabriel
  • Mataveli, Guilherme

Abstract

The concept of resilience can be helpful in describing the relationship between vegetation and climate, especially when considering the likelihood of more extreme climate events due to global warming. However, the quantification and characterization of resilience is a challenge, due to the inherent complexity of the concept, as well as difficulty in comparing different ecosystems across the globe. In order to explore ecosystem resilience to drought, we estimated the resilience and related metrics from a series of land surface model (LSM) simulations with altered climate forcing data, focusing on the responses to changing precipitation. These simulations were performed in the semi-arid region of Caatinga biome, northeastern Brazil. Results showed that the quantification of resilience can be represented as a function between precipitation variation and gross primary productivity (GPP) variation. We compared the resilience components estimated for different vegetation types, which showed differences in the response of vegetation to precipitation variability. The study shows the potential of using LSMs to improve our understanding of the vegetation response to climate change, allowing us to explore possible scenarios that are usually not available in field experiments.

Suggested Citation

  • Seixas, Hugo Tameirão & Brunsell, Nathaniel A. & Moraes, Elisabete Caria & de Oliveira, Gabriel & Mataveli, Guilherme, 2022. "Exploring the ecosystem resilience concept with land surface model scenarios," Ecological Modelling, Elsevier, vol. 464(C).
  • Handle: RePEc:eee:ecomod:v:464:y:2022:i:c:s0304380021003616
    DOI: 10.1016/j.ecolmodel.2021.109817
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380021003616
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2021.109817?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Christopher R. Schwalm & William R. L. Anderegg & Anna M. Michalak & Joshua B. Fisher & Franco Biondi & George Koch & Marcy Litvak & Kiona Ogle & John D. Shaw & Adam Wolf & Deborah N. Huntzinger & Kev, 2017. "Global patterns of drought recovery," Nature, Nature, vol. 548(7666), pages 202-205, August.
    2. Forest Isbell & Dylan Craven & John Connolly & Michel Loreau & Bernhard Schmid & Carl Beierkuhnlein & T. Martijn Bezemer & Catherine Bonin & Helge Bruelheide & Enrica de Luca & Anne Ebeling & John N. , 2015. "Biodiversity increases the resistance of ecosystem productivity to climate extremes," Nature, Nature, vol. 526(7574), pages 574-577, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hong Ran & Yonggang Ma & Zhonglin Xu, 2022. "Evaluation and Prediction of Land Use Ecological Security in the Kashgar Region Based on Grid GIS," Sustainability, MDPI, vol. 15(1), pages 1-14, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiaoliang Shi & Fei Chen & Hao Ding & Mengqi Shi & Yi Li, 2022. "Assessing Vegetation Ecosystem Resistance to Drought in the Middle Reaches of the Yellow River Basin, China," IJERPH, MDPI, vol. 19(7), pages 1-16, March.
    2. Jie Lu & Fengqin Yan, 2023. "The Divergent Resistance and Resilience of Forest and Grassland Ecosystems to Extreme Summer Drought in Carbon Sequestration," Land, MDPI, vol. 12(9), pages 1-17, August.
    3. Yanqun Ren & Jinping Liu & Patrick Willems & Tie Liu & Quoc Bao Pham, 2023. "Detection and Assessment of Changing Drought Events in China in the Context of Climate Change Based on the Intensity–Area–Duration Algorithm," Land, MDPI, vol. 12(10), pages 1-18, September.
    4. Vinícius B. P. Chagas & Pedro L. B. Chaffe & Günter Blöschl, 2022. "Climate and land management accelerate the Brazilian water cycle," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    5. Augeraud-Véron, Emmanuelle & Fabbri, Giorgio & Schubert, Katheline, 2021. "Volatility-reducing biodiversity conservation under strategic interactions," Ecological Economics, Elsevier, vol. 190(C).
    6. Zhan, Cun & Liang, Chuan & Zhao, Lu & Jiang, Shouzheng & Niu, Kaijie & Zhang, Yaling, 2023. "Multifractal characteristics of multiscale drought in the Yellow River Basin, China," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 609(C).
    7. Liu, Zihan & Cai, Lu & Dong, Qinge & Zhao, Xiaoli & Han, Jianqiao, 2022. "Effects of microplastics on water infiltration in agricultural soil on the Loess Plateau, China," Agricultural Water Management, Elsevier, vol. 271(C).
    8. Xiangzhong Luo & Trevor F. Keenan, 2022. "Tropical extreme droughts drive long-term increase in atmospheric CO2 growth rate variability," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    9. Ping, Jiaye & Zhou, Jian & Huang, Kun & Sun, Xiaoying & Sun, Huanfa & Xia, Jianyang, 2021. "Modeling the typhoon disturbance effect on ecosystem carbon storage dynamics in a subtropical forest of China's coastal region," Ecological Modelling, Elsevier, vol. 455(C).
    10. Mohammed Mohi-Ud-Din & Md. Alamgir Hossain & Md. Motiar Rohman & Md. Nesar Uddin & Md. Sabibul Haque & Eldessoky S. Dessoky & Mohammed Alqurashi & Salman Aloufi, 2022. "Assessment of Genetic Diversity of Bread Wheat Genotypes for Drought Tolerance Using Canopy Reflectance-Based Phenotyping and SSR Marker-Based Genotyping," Sustainability, MDPI, vol. 14(16), pages 1-19, August.
    11. Anne Gobin & Le Thi Thu Hien & Le Trinh Hai & Pham Ha Linh & Nguyen Ngoc Thang & Pham Quang Vinh, 2020. "Adaptation to Land Degradation in Southeast Vietnam," Land, MDPI, vol. 9(9), pages 1-25, August.
    12. Imran Khaliq & Christian Rixen & Florian Zellweger & Catherine H. Graham & Martin M. Gossner & Ian R. McFadden & Laura Antão & Jakob Brodersen & Shyamolina Ghosh & Francesco Pomati & Ole Seehausen & T, 2024. "Warming underpins community turnover in temperate freshwater and terrestrial communities," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    13. Rinella, Matthew J. & James, Jeremy J., 2017. "A modelling framework for improving plant establishment during ecological restoration," Ecological Modelling, Elsevier, vol. 361(C), pages 177-183.
    14. Lei Zhang & Wei Song & Wen Song, 2020. "Assessment of Agricultural Drought Risk in the Lancang-Mekong Region, South East Asia," IJERPH, MDPI, vol. 17(17), pages 1-24, August.
    15. Akash Koppa & Dominik Rains & Petra Hulsman & Rafael Poyatos & Diego G. Miralles, 2022. "A deep learning-based hybrid model of global terrestrial evaporation," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    16. Donohue, Ian & Coscieme, Luca & Gellner, Gabriel & Yang, Qiang & Jackson, Andrew L. & Kubiszewski, Ida & Costanza, Robert & McCann, Kevin S., 2023. "Accelerated economic recovery in countries powered by renewables," Ecological Economics, Elsevier, vol. 212(C).
    17. Jun Chen & Liguo Cao, 2022. "Spatiotemporal Variability in Water-Use Efficiency in Tianshan Mountains (Xinjiang, China) and the Influencing Factors," Sustainability, MDPI, vol. 14(13), pages 1-14, July.
    18. Han Zhang & Lin Wang, 2022. "Species Diversity and Carbon Sequestration Oxygen Release Capacity of Dominant Communities in the Hancang River Basin, China," Sustainability, MDPI, vol. 14(9), pages 1-21, April.
    19. Zhongfa Zhou & Qing Feng & Changli Zhu & Wanlin Luo & Lingyu Wang & Xin Zhao & Lu Zhang, 2022. "The Spatial and Temporal Evolution of Ecological Environment Quality in Karst Ecologically Fragile Areas Driven by Poverty Alleviation Resettlement," Land, MDPI, vol. 11(8), pages 1-20, July.
    20. Ellie-Anne Jones & Lisa Paige & Albany Smith & Annabelle Worth & Lois Betts & Richard Stafford, 2024. "Potential for Carbon Credits from Conservation Management: Price and Potential for Multi-Habitat Nature-Based Carbon Sequestration in Dorset, UK," Sustainability, MDPI, vol. 16(3), pages 1-12, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:464:y:2022:i:c:s0304380021003616. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.