IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v490y2024ics0304380024000589.html
   My bibliography  Save this article

Sensitivity of long-term productivity estimations in mixed forests to uncertain parameters related to fine roots

Author

Listed:
  • Yeste, Antonio
  • Seely, Brad
  • Imbert, J. Bosco
  • Blanco, Juan A.

Abstract

Forest growth models are increasingly being used in forestry and ecology research as predictive tools to help developing practical guidelines and to improve understanding of the drivers of forest ecosystem functioning. Models are usually calibrated using parameters directly obtained or estimated from empirical field observation, and hence are subject to uncertainty. Thus, output accuracy depends on input parameters precision and on how influential is each parameter on model behaviour. Hence, it is important to analyse parameter-related uncertainty and its effects on model outputs. This can be done by performing sensitivity analyses, which allow to explore the influence of one or several calibration parameters on model outputs. As studies on tree root parameters are particularly scarce, the aim of the present work was to evaluate the influence of parameters related to fine roots on estimations of long-term forest growth patterns in pure and mixed forests, using FORECAST (a hybrid forest growth model) as a virtual lab. The fine root parameters assessed were biomass, turnover rate, and nitrogen content. The analysis was performed by simulating monospecific stands of two contrasting species (Pinus sylvestris L. and Fagus sylvatica L.), and mixed stands formed by both species. In all cases, FORECAST showed good capability to contain uncertainty propagation during the first and middle stages of stand development (<40 years). After that moment, model output uncertainty steadily increased, but it reached different maximum uncertainty levels depending on stand type. Simulations of the less nutrient demanding P. sylvestris manifested very little sensitivity when growing in monospecific stands. However, F. sylvatica monospecific stands showed intermediate sensitivity, but significant species interactions occurred in mixed stands that determined the biggest impact detected of uncertainty related to fine root parameters over model outputs. All things considered, FORECAST displayed an interesting capability to capture some of the interspecific interactions that are key in mixed forests functioning. Our results suggest an acceptable model performance under uncertain parameterization but also caution against expecting accurate quantitative estimations of forest growth, especially when considering long-term scenarios in complex mixed stands.

Suggested Citation

  • Yeste, Antonio & Seely, Brad & Imbert, J. Bosco & Blanco, Juan A., 2024. "Sensitivity of long-term productivity estimations in mixed forests to uncertain parameters related to fine roots," Ecological Modelling, Elsevier, vol. 490(C).
  • Handle: RePEc:eee:ecomod:v:490:y:2024:i:c:s0304380024000589
    DOI: 10.1016/j.ecolmodel.2024.110670
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380024000589
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2024.110670?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:490:y:2024:i:c:s0304380024000589. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.