IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v453y2021ics030438002100171x.html
   My bibliography  Save this article

Integrated ecosystem impacts of climate change and eutrophication on main Baltic fishery resources

Author

Listed:
  • Bossier, Sieme
  • Nielsen, J. Rasmus
  • Almroth-Rosell, Elin
  • Höglund, Anders
  • Bastardie, Francois
  • Neuenfeldt, Stefan
  • Wåhlström, Iréne
  • Christensen, Asbjørn

Abstract

The Baltic Sea is a heavily impacted ecosystem with multiple pressures acting simultaneously. In order to quantify ecosystem impacts of integrated climate change and eutrophication pressures under constant high fishing pressure, and to support decision-making and policies in generating environmental and economic sustainable systems, the Baltic Atlantis holistic and mechanistic ecosystem model was applied. The overall aim was to run scenarios of separate and integrated impacts of climate and riverine nutrient load changes, taking into account the interactions of the full food web in the entire Baltic Sea. This was done to identify which of those two pressures will likely dominate the future of the Baltic Sea ecosystem, and to test effects of different riverine nutrient forcing sources as well as the Baltic Atlantis functions in relation to hydrographic spawning thresholds. By integrating the hydrography, the biology covering all trophic levels of the food web, and multiple pressures, i.e. eutrophication, climate change and fishery, we were able to evaluate relative impacts of 3 climate scenarios and 3 nutrient load scenarios, using two sources of nutrient forcing and predict likely trends in ecosystem effects. With focus on major fish stocks, our model, with its assumptions, indicated that nutrient loads are the main driver of the changes in the ecosystem as long as the hydrographic thresholds for spawning are not reached. If the thresholds are reached for the Baltic cod, climate change impact will become most important. Furthermore, higher nutrient loads resulted in cod decrease, and increase in sprat and herring. This effect is amplified by stronger climate change. Overall, it is of crucial importance for the future of the Baltic Sea fisheries and stocks that potential impacts are considered both separate and integrated in a dynamic ecosystem-based management approach.

Suggested Citation

  • Bossier, Sieme & Nielsen, J. Rasmus & Almroth-Rosell, Elin & Höglund, Anders & Bastardie, Francois & Neuenfeldt, Stefan & Wåhlström, Iréne & Christensen, Asbjørn, 2021. "Integrated ecosystem impacts of climate change and eutrophication on main Baltic fishery resources," Ecological Modelling, Elsevier, vol. 453(C).
  • Handle: RePEc:eee:ecomod:v:453:y:2021:i:c:s030438002100171x
    DOI: 10.1016/j.ecolmodel.2021.109609
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030438002100171X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2021.109609?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bossier, Sieme & Nielsen, J. Rasmus & Neuenfeldt, Stefan, 2020. "Exploring trophic interactions and cascades in the Baltic Sea using a complex end-to-end ecosystem model with extensive food web integration," Ecological Modelling, Elsevier, vol. 436(C).
    2. Erik Olsen & Gavin Fay & Sarah Gaichas & Robert Gamble & Sean Lucey & Jason S Link, 2016. "Ecosystem Model Skill Assessment. Yes We Can!," PLOS ONE, Public Library of Science, vol. 11(1), pages 1-24, January.
    3. Frisk, C. & Andersen, K.H. & Temming, A. & Herrmann, J.P. & Madsen, K.S. & Kraus, G., 2015. "Environmental effects on sprat (Sprattus sprattus) physiology and growth at the distribution frontier: A bioenergetic modelling approach," Ecological Modelling, Elsevier, vol. 299(C), pages 130-139.
    4. Detlef Vuuren & Jae Edmonds & Mikiko Kainuma & Keywan Riahi & Allison Thomson & Kathy Hibbard & George Hurtt & Tom Kram & Volker Krey & Jean-Francois Lamarque & Toshihiko Masui & Malte Meinshausen & N, 2011. "The representative concentration pathways: an overview," Climatic Change, Springer, vol. 109(1), pages 5-31, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Caracappa, Joseph C. & Beet, Andrew & Gaichas, Sarah & Gamble, Robert J. & Hyde, Kimberly J.W. & Large, Scott I. & Morse, Ryan E. & Stock, Charles A. & Saba, Vincent S., 2022. "A northeast United States Atlantis marine ecosystem model with ocean reanalysis and ocean color forcing," Ecological Modelling, Elsevier, vol. 471(C).
    2. Perryman, Holly A. & Kaplan, Isaac C. & Blanchard, Julia L. & Fay, Gavin & Gaichas, Sarah K. & McGregor, Vidette L. & Morzaria-Luna, Hem Nalini & Porobic, Javier & Townsend, Howard & Fulton, Elizabeth, 2023. "Atlantis Ecosystem Model Summit 2022: Report from a workshop," Ecological Modelling, Elsevier, vol. 483(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gupta, Rishabh & Mishra, Ashok, 2019. "Climate change induced impact and uncertainty of rice yield of agro-ecological zones of India," Agricultural Systems, Elsevier, vol. 173(C), pages 1-11.
    2. Voisin, Nathalie & Dyreson, Ana & Fu, Tao & O'Connell, Matt & Turner, Sean W.D. & Zhou, Tian & Macknick, Jordan, 2020. "Impact of climate change on water availability and its propagation through the Western U.S. power grid," Applied Energy, Elsevier, vol. 276(C).
    3. Cristina Cattaneo & Emanuele Massetti, 2019. "Does Harmful Climate Increase Or Decrease Migration? Evidence From Rural Households In Nigeria," Climate Change Economics (CCE), World Scientific Publishing Co. Pte. Ltd., vol. 10(04), pages 1-36, November.
    4. Pascalle Smith & Georg Heinrich & Martin Suklitsch & Andreas Gobiet & Markus Stoffel & Jürg Fuhrer, 2014. "Station-scale bias correction and uncertainty analysis for the estimation of irrigation water requirements in the Swiss Rhone catchment under climate change," Climatic Change, Springer, vol. 127(3), pages 521-534, December.
    5. T.M.L. Wigley, 2018. "The Paris warming targets: emissions requirements and sea level consequences," Climatic Change, Springer, vol. 147(1), pages 31-45, March.
    6. Gong, Ziqian & Baker, Justin S. & Wade, Christopher M. & Havlík, Petr, 2024. "Irrigation intensification in U.S. agriculture under climate change – an adaptation mechanism or trade-induced response?," 2024 Annual Meeting, July 28-30, New Orleans, LA 343581, Agricultural and Applied Economics Association.
    7. Kalkuhl, Matthias & Wenz, Leonie, 2020. "The impact of climate conditions on economic production. Evidence from a global panel of regions," Journal of Environmental Economics and Management, Elsevier, vol. 103(C).
    8. Islam, AFM Tariqul & Islam, AKM Saiful & Islam, GM Tarekul & Bala, Sujit Kumar & Salehin, Mashfiqus & Choudhury, Apurba Kanti & Dey, Nepal C. & Hossain, Akbar, 2022. "Adaptation strategies to increase water productivity of wheat under changing climate," Agricultural Water Management, Elsevier, vol. 264(C).
    9. Jaewon Kwak & Huiseong Noh & Soojun Kim & Vijay P. Singh & Seung Jin Hong & Duckgil Kim & Keonhaeng Lee & Narae Kang & Hung Soo Kim, 2014. "Future Climate Data from RCP 4.5 and Occurrence of Malaria in Korea," IJERPH, MDPI, vol. 11(10), pages 1-19, October.
    10. Hwang, In Chang, 2013. "Stochastic Kaya model and its applications," MPRA Paper 55099, University Library of Munich, Germany.
    11. Roson, Roberto & Damania, Richard, 2016. "Simulating the Macroeconomic Impact of Future Water Scarcity an Assessment of Alternative Scenarios," Conference papers 332687, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    12. Le Bars, Dewi, 2018. "Uncertainty in sea level rise projections due to the dependence between contributors," Earth Arxiv uvw3s, Center for Open Science.
    13. Marcinkowski, Paweł & Piniewski, Mikołaj, 2024. "Future changes in crop yield over Poland driven by climate change, increasing atmospheric CO2 and nitrogen stress," Agricultural Systems, Elsevier, vol. 213(C).
    14. Taylor, Chris & Cullen, Brendan & D'Occhio, Michael & Rickards, Lauren & Eckard, Richard, 2018. "Trends in wheat yields under representative climate futures: Implications for climate adaptation," Agricultural Systems, Elsevier, vol. 164(C), pages 1-10.
    15. Henzler, Julia & Weise, Hanna & Enright, Neal J. & Zander, Susanne & Tietjen, Britta, 2018. "A squeeze in the suitable fire interval: Simulating the persistence of fire-killed plants in a Mediterranean-type ecosystem under drier conditions," Ecological Modelling, Elsevier, vol. 389(C), pages 41-49.
    16. Abhiru Aryal & Albira Acharya & Ajay Kalra, 2022. "Assessing the Implication of Climate Change to Forecast Future Flood Using CMIP6 Climate Projections and HEC-RAS Modeling," Forecasting, MDPI, vol. 4(3), pages 1-22, June.
    17. Hemen Mark Butu & Yongwon Seo & Jeung Soo Huh, 2020. "Determining Extremes for Future Precipitation in South Korea Based on RCP Scenarios Using Non-Parametric SPI," Sustainability, MDPI, vol. 12(3), pages 1-26, January.
    18. Milan Ščasný & Emanuele Massetti & Jan Melichar & Samuel Carrara, 2015. "Quantifying the Ancillary Benefits of the Representative Concentration Pathways on Air Quality in Europe," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 62(2), pages 383-415, October.
    19. Habtemariam, Lemlem Teklegiorgis & Abate Kassa, Getachew & Gandorfer, Markus, 2017. "Impact of climate change on farms in smallholder farming systems: Yield impacts, economic implications and distributional effects," Agricultural Systems, Elsevier, vol. 152(C), pages 58-66.
    20. Allen-Dumas, Melissa R. & Rose, Amy N. & New, Joshua R. & Omitaomu, Olufemi A. & Yuan, Jiangye & Branstetter, Marcia L. & Sylvester, Linda M. & Seals, Matthew B. & Carvalhaes, Thomaz M. & Adams, Mark , 2020. "Impacts of the morphology of new neighborhoods on microclimate and building energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:453:y:2021:i:c:s030438002100171x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.