IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v351y2017icp14-23.html
   My bibliography  Save this article

Modeling bumble bee population dynamics with delay differential equations

Author

Listed:
  • Banks, H.T.
  • Banks, J.E.
  • Bommarco, Riccardo
  • Laubmeier, A.N.
  • Myers, N.J.
  • Rundlöf, Maj
  • Tillman, Kristen

Abstract

Bumble bees are ubiquitous creatures and crucial pollinators to a vast assortment of crops worldwide. Bumble bee populations have been decreasing in recent decades, with demise of flower resources and pesticide exposure being two of several suggested pressures causing declines. Many empirical investigations have been performed on bumble bees and their natural history is well documented, but the understanding of their population dynamics over time, causes for observed declines, and potential benefits of management actions is poor. To provide a tool for projecting and testing sensitivity of growth of populations under contrasting and combined pressures, we propose a delay differential equation model that describes multi-colony bumble bee population dynamics. We explain the usefulness of delay equations as a natural modeling formulation, particularly for bumble bee modeling. We then introduce a particular numerical method that approximates the solution of the delay model. Next, we provide simulations of seasonal population dynamics in the absence of pressures. We conclude by describing ways in which resource limitation, pesticide exposure and other pressures can be reflected in the model.

Suggested Citation

  • Banks, H.T. & Banks, J.E. & Bommarco, Riccardo & Laubmeier, A.N. & Myers, N.J. & Rundlöf, Maj & Tillman, Kristen, 2017. "Modeling bumble bee population dynamics with delay differential equations," Ecological Modelling, Elsevier, vol. 351(C), pages 14-23.
  • Handle: RePEc:eee:ecomod:v:351:y:2017:i:c:p:14-23
    DOI: 10.1016/j.ecolmodel.2017.02.011
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380017301606
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2017.02.011?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Richard J. Gill & Oscar Ramos-Rodriguez & Nigel E. Raine, 2012. "Combined pesticide exposure severely affects individual- and colony-level traits in bees," Nature, Nature, vol. 491(7422), pages 105-108, November.
    2. Marie José Duchateau & Hayo H. W. Velthuis & Jacobus J. Boomsma, 2004. "Sex ratio variation in the bumblebee Bombus terrestris," Behavioral Ecology, International Society for Behavioral Ecology, vol. 15(1), pages 71-82, January.
    3. Bellen, Alfredo & Zennaro, Marino, 2013. "Numerical Methods for Delay Differential Equations," OUP Catalogue, Oxford University Press, number 9780199671373, Decembrie.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Stucchi, Luciano & Giménez-Benavides, Luis & Galeano, Javier, 2019. "The role of parasitoids in a nursery-pollinator system: A population dynamics model," Ecological Modelling, Elsevier, vol. 396(C), pages 50-58.
    2. Carturan, Bruno S. & Siewe, Nourridine & Cobbold, Christina A. & Tyson, Rebecca C., 2023. "Bumble bee pollination and the wildflower/crop trade-off: When do wildflower enhancements improve crop yield?," Ecological Modelling, Elsevier, vol. 484(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dubey, Balram & Sajan, & Kumar, Ankit, 2021. "Stability switching and chaos in a multiple delayed prey–predator model with fear effect and anti-predator behavior," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 188(C), pages 164-192.
    2. Omran, A.K. & Zaky, M.A. & Hendy, A.S. & Pimenov, V.G., 2022. "An easy to implement linearized numerical scheme for fractional reaction–diffusion equations with a prehistorical nonlinear source function," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 200(C), pages 218-239.
    3. PK Gupta, 2018. "An Assessment of Relative Risks to Human/Ecological Health Biotech Crops versus Other Human Activities," Current Investigations in Agriculture and Current Research, Lupine Publishers, LLC, vol. 1(2), pages 51-62, February.
    4. Patricia A. Henríquez-Piskulich & Constanza Schapheer & Nicolas J. Vereecken & Cristian Villagra, 2021. "Agroecological Strategies to Safeguard Insect Pollinators in Biodiversity Hotspots: Chile as a Case Study," Sustainability, MDPI, vol. 13(12), pages 1-31, June.
    5. Kleczkowski, Adam & Ellis, Ciaran & Hanley, Nick & Goulson, David, 2017. "Pesticides and bees: Ecological-economic modelling of bee populations on farmland," Ecological Modelling, Elsevier, vol. 360(C), pages 53-62.
    6. Firanchuk, Alexander (Фиранчук, Александр), 2017. "Illegal Re-Export and Analysis of the Effectiveness of the Russian Food Embargo in 2014 [Незаконный Реэкспорт И Анализ Эффективности Российского Продовольственного Эмбарго 2014 Года]," Working Papers 041705, Russian Presidential Academy of National Economy and Public Administration.
    7. Mack, G. & Finger, R. & Ammann, J. & El Benni, N., 2023. "Modelling policies towards pesticide-free agricultural production systems," Agricultural Systems, Elsevier, vol. 207(C).
    8. Aneta Bokšová & Jan Kazda & Martina Stejskalová & Tomáš Šubrt & Leoš Uttl & Petr Mráz & Jan Bartoška, 2021. "Findings of herbicide and fungicide residues in bee bread," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 67(6), pages 343-352.
    9. Lauren Brzozowski & Michael Mazourek, 2018. "A Sustainable Agricultural Future Relies on the Transition to Organic Agroecological Pest Management," Sustainability, MDPI, vol. 10(6), pages 1-25, June.
    10. Mahmoudi, Fatemeh & Tahmasebi, Mahdieh, 2022. "The convergence of a numerical scheme for additive fractional stochastic delay equations with H>12," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 191(C), pages 219-231.
    11. Caleb Kiplimo Bett, 2017. "Factors Influencing Quality Honey Production," International Journal of Academic Research in Business and Social Sciences, Human Resource Management Academic Research Society, International Journal of Academic Research in Business and Social Sciences, vol. 7(11), pages 281-292, November.
    12. Benito Chen-Charpentier, 2021. "Stochastic Modeling of Plant Virus Propagation with Biological Control," Mathematics, MDPI, vol. 9(5), pages 1-16, February.
    13. Fernando Alcántara-López & Carlos Fuentes & Carlos Chávez & Jesús López-Estrada & Fernando Brambila-Paz, 2022. "Fractional Growth Model with Delay for Recurrent Outbreaks Applied to COVID-19 Data," Mathematics, MDPI, vol. 10(5), pages 1-18, March.
    14. Lauren C. Ponisio & Paul R. Ehrlich, 2016. "Diversification, Yield and a New Agricultural Revolution: Problems and Prospects," Sustainability, MDPI, vol. 8(11), pages 1-15, November.
    15. Liu, Wenjing & Wang, Jingsheng & Li, Chao & Chen, Baoxiong & Sun, Yufang, 2019. "Using Bibliometric Analysis to Understand the Recent Progress in Agroecosystem Services Research," Ecological Economics, Elsevier, vol. 156(C), pages 293-305.
    16. Dipty Sharma & Paramjeet Singh, 2020. "Discontinuous Galerkin approximation for excitatory-inhibitory networks with delay and refractory periods," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 31(03), pages 1-25, January.
    17. Vsevolod G. Sorokin & Andrei V. Vyazmin, 2022. "Nonlinear Reaction–Diffusion Equations with Delay: Partial Survey, Exact Solutions, Test Problems, and Numerical Integration," Mathematics, MDPI, vol. 10(11), pages 1-39, May.
    18. G. Kleftodimos & N. Gallai & Ch. Kephaliacos, 2021. "Ecological-economic modeling of pollination complexity and pesticide use in agricultural crops," Journal of Bioeconomics, Springer, vol. 23(3), pages 297-323, October.
    19. Martina BOBALOVA & Veronika NOVOTNA, 2021. "Modeling Of Time Delayed Processes In Business Economics," Proceedings of the INTERNATIONAL MANAGEMENT CONFERENCE, Faculty of Management, Academy of Economic Studies, Bucharest, Romania, vol. 15(1), pages 79-89, November.
    20. Berthet, Elsa T. & Bretagnolle, Vincent & Gaba, Sabrina, 2022. "Place-based social-ecological research is crucial for designing collective management of ecosystem services," Ecosystem Services, Elsevier, vol. 55(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:351:y:2017:i:c:p:14-23. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.