IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v325y2016icp35-46.html
   My bibliography  Save this article

Carbon sequestration by white spruce shelterbelts in Saskatchewan, Canada: 3PG and CBM-CFS3 model simulations

Author

Listed:
  • Amichev, Beyhan Y.
  • Bentham, Murray J.
  • Kurz, Werner A.
  • Laroque, Colin P.
  • Kulshreshtha, Suren
  • Piwowar, Joseph M.
  • Van Rees, Ken C.J.

Abstract

For more than a century, planted shelterbelts in Saskatchewan, Canada have protected farmyards from the elements, decreased soil erosion, sequestered atmospheric carbon, as well as provided many other ecological functions. It is estimated that there are >60,000km of planted shelterbelts throughout the province, and considerably more in all of the Canadian Prairies. This paper details the overall process of quantifying and mapping the carbon stocks in white spruce (Picea glauca) shelterbelts planted in Saskatchewan. Shelterbelt data collected from field sampling sites, which were identified by a unique site selection approach, were used to parameterize two models for use in shelterbelt systems; an independent data set was used to validate model predictions. Shelterbelt tree growth was modeled with the Physiological Principles in Predicting Growth (3PG) model, and carbon flux and stocks in shelterbelts were modeled with the Carbon Budget Model of the Canadian Forest Sector (CBM-CFS3). Annual total ecosystem carbon (TEC) flux in white spruce shelterbelts increased one order of magnitude, from −0.33 to 4.4Mg Ckm−1yr−1, for age 1–25 years, and reached a peak of 5.5Mg Ckm−1yr−1 (age 39 years). An initial soil carbon loss from the shelterbelt, caused by the land-use change, was offset in full by tree growth by age 17, 18, and 21 years for trees planted at 2.0, 3.5, and 5.0m spacing within a row, respectively. Increase in carbon stocks, after 60 years of growth, was predicted in the litter layer (21.8Mg Ckm−1), belowground biomass (26.1Mg Ckm−1), and aboveground biomass (117.6Mg Ckm−1). Across all the different provincial soils, carbon additions were 106–195Mg Ckm−1 in 60-yr-old white spruce shelterbelts. Cumulatively, accounting for eight decades of white spruce shelterbelt planting and tree growth, carbon additions totaled 50,440Mg C province-wide in 991km of white spruce shelterbelts. The C additions represented 38% of the province-wide TEC stocks, which totaled 131,750Mg C. The cumulative carbon storage in all components of planted white spruce shelterbelts far exceeded the initial carbon levels present at the time of shelterbelt planting.

Suggested Citation

  • Amichev, Beyhan Y. & Bentham, Murray J. & Kurz, Werner A. & Laroque, Colin P. & Kulshreshtha, Suren & Piwowar, Joseph M. & Van Rees, Ken C.J., 2016. "Carbon sequestration by white spruce shelterbelts in Saskatchewan, Canada: 3PG and CBM-CFS3 model simulations," Ecological Modelling, Elsevier, vol. 325(C), pages 35-46.
  • Handle: RePEc:eee:ecomod:v:325:y:2016:i:c:p:35-46
    DOI: 10.1016/j.ecolmodel.2016.01.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380016000107
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2016.01.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kurz, W.A. & Dymond, C.C. & White, T.M. & Stinson, G. & Shaw, C.H. & Rampley, G.J. & Smyth, C. & Simpson, B.N. & Neilson, E.T. & Trofymow, J.A. & Metsaranta, J. & Apps, M.J., 2009. "CBM-CFS3: A model of carbon-dynamics in forestry and land-use change implementing IPCC standards," Ecological Modelling, Elsevier, vol. 220(4), pages 480-504.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Adhikari, Arjun & White, Joseph D., 2016. "Climate change impacts on regenerating shrubland productivity," Ecological Modelling, Elsevier, vol. 337(C), pages 211-220.
    2. Corey Flude & Alexandra Ficht & Frydda Sandoval & Eric Lyons, 2022. "Development of an Urban Turfgrass and Tree Carbon Calculator for Northern Temperate Climates," Sustainability, MDPI, vol. 14(19), pages 1-14, September.
    3. Hararuk, Oleksandra & Shaw, Cindy & Kurz, Werner A., 2017. "Constraining the organic matter decay parameters in the CBM-CFS3 using Canadian National Forest Inventory data and a Bayesian inversion technique," Ecological Modelling, Elsevier, vol. 364(C), pages 1-12.
    4. Elli, Elvis Felipe & Huth, Neil & Sentelhas, Paulo Cesar & Carneiro, Rafaela Lorenzato & Alvares, Clayton Alcarde, 2020. "Ability of the APSIM Next Generation Eucalyptus model to simulate complex traits across contrasting environments," Ecological Modelling, Elsevier, vol. 419(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Metsaranta, J.M. & Kurz, W.A., 2012. "Inter-annual variability of ecosystem production in boreal jack pine forests (1975–2004) estimated from tree-ring data using CBM-CFS3," Ecological Modelling, Elsevier, vol. 224(1), pages 111-123.
    2. Seidl, Rupert & Fernandes, Paulo M. & Fonseca, Teresa F. & Gillet, François & Jönsson, Anna Maria & Merganičová, Katarína & Netherer, Sigrid & Arpaci, Alexander & Bontemps, Jean-Daniel & Bugmann, Hara, 2011. "Modelling natural disturbances in forest ecosystems: a review," Ecological Modelling, Elsevier, vol. 222(4), pages 903-924.
    3. Ima Ituen & Baoxin Hu, 2024. "Assessing the Impact of Land Conversion on Carbon Stocks and GHG Emissions," Land, MDPI, vol. 13(8), pages 1-31, August.
    4. Shenghao Feng & Xiujian Peng & Philip Adams, 2021. "Energy and Economic Implications of Carbon Neutrality in China -- A Dynamic General Equilibrium Analysis," Centre of Policy Studies/IMPACT Centre Working Papers g-318, Victoria University, Centre of Policy Studies/IMPACT Centre.
    5. Bona, Kelly A. & Webster, Kara L. & Thompson, Dan K. & Hararuk, Oleksandra & Zhang, Gary & Kurz, Werner A., 2024. "Using the Canadian Model for Peatlands (CaMP) to examine greenhouse gas emissions and carbon sink strength in Canada's boreal and temperate peatlands," Ecological Modelling, Elsevier, vol. 490(C).
    6. Jing Zhao & Hui Hu & Jinglei Wang, 2022. "Forest Carbon Reserve Calculation and Comprehensive Economic Value Evaluation: A Forest Management Model Based on Both Biomass Expansion Factor Method and Total Forest Value," IJERPH, MDPI, vol. 19(23), pages 1-15, November.
    7. Shaw, C.H. & Hilger, A.B. & Metsaranta, J. & Kurz, W.A. & Russo, G. & Eichel, F. & Stinson, G. & Smyth, C. & Filiatrault, M., 2014. "Evaluation of simulated estimates of forest ecosystem carbon stocks using ground plot data from Canada's National Forest Inventory," Ecological Modelling, Elsevier, vol. 272(C), pages 323-347.
    8. Miquelajauregui, Yosune & Cumming, Steven G. & Gauthier, Sylvie, 2019. "Short-term responses of boreal carbon stocks to climate change: A simulation study of black spruce forests," Ecological Modelling, Elsevier, vol. 409(C), pages 1-1.
    9. Ménard, Isabelle & Thiffault, Evelyne & Boulanger, Yan & Boucher, Jean-François, 2022. "Multi-model approach to integrate climate change impact on carbon sequestration potential of afforestation scenarios in Quebec, Canada," Ecological Modelling, Elsevier, vol. 473(C).
    10. Wang, Z. & Grant, R.F. & Arain, M.A. & Bernier, P.Y. & Chen, B. & Chen, J.M. & Govind, A. & Guindon, L. & Kurz, W.A. & Peng, C. & Price, D.T. & Stinson, G. & Sun, J. & Trofymowe, J.A. & Yeluripati, J., 2013. "Incorporating weather sensitivity in inventory-based estimates of boreal forest productivity: A meta-analysis of process model results," Ecological Modelling, Elsevier, vol. 260(C), pages 25-35.
    11. Duveiller, Gregory & Caporaso, Luca & Abad-Viñas, Raul & Perugini, Lucia & Grassi, Giacomo & Arneth, Almut & Cescatti, Alessandro, 2020. "Local biophysical effects of land use and land cover change: towards an assessment tool for policy makers," Land Use Policy, Elsevier, vol. 91(C).
    12. Cherubini, Francesco & Strømman, Anders H. & Hertwich, Edgar, 2011. "Effects of boreal forest management practices on the climate impact of CO2 emissions from bioenergy," Ecological Modelling, Elsevier, vol. 223(1), pages 59-66.
    13. Minhas, P.S. & Yadav, R.K. & Lal, K. & Chaturvedi, R.K., 2015. "Effect of long-term irrigation with wastewater on growth, biomass production and water use by Eucalyptus (Eucalyptus tereticornis Sm.) planted at variable stocking density," Agricultural Water Management, Elsevier, vol. 152(C), pages 151-160.
    14. Eilidh J. Forster & John R. Healey & Gary Newman & David Styles, 2023. "Circular wood use can accelerate global decarbonisation but requires cross-sectoral coordination," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    15. Griess, Verena C. & Man, Cosmin D. & Leclerc, Marie-Eve & Tansey, James & Bull, Gary Q., 2019. "Carbon stocks and timber harvest. Alternative policy approaches for the Great Bear rainforest and their consequences," Forest Policy and Economics, Elsevier, vol. 103(C), pages 147-156.
    16. Jonsson, Ragnar & Rinaldi, Francesca & Pilli, Roberto & Fiorese, Giulia & Hurmekoski, Elias & Cazzaniga, Noemi & Robert, Nicolas & Camia, Andrea, 2021. "Boosting the EU forest-based bioeconomy: Market, climate, and employment impacts," Technological Forecasting and Social Change, Elsevier, vol. 163(C).
    17. Richard Dudley, 2010. "A little REDD model to quickly compare possible baseline and policy scenarios for reducing emissions from deforestation and forest degradation," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 15(1), pages 53-69, January.
    18. Joan P. Casas-Ruiz & Pascal Bodmer & Kelly Ann Bona & David Butman & Mathilde Couturier & Erik J. S. Emilson & Kerri Finlay & Hélène Genet & Daniel Hayes & Jan Karlsson & David Paré & Changhui Peng & , 2023. "Integrating terrestrial and aquatic ecosystems to constrain estimates of land-atmosphere carbon exchange," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    19. Bona, Kelly Ann & Shaw, Cindy & Thompson, Dan K. & Hararuk, Oleksandra & Webster, Kara & Zhang, Gary & Voicu, Mihai & Kurz, Werner A., 2020. "The Canadian model for peatlands (CaMP): A peatland carbon model for national greenhouse gas reporting," Ecological Modelling, Elsevier, vol. 431(C).
    20. Pilli, Roberto & Grassi, Giacomo & Kurz, Werner A. & Smyth, Carolyn E. & Blujdea, Viorel, 2013. "Application of the CBM-CFS3 model to estimate Italy's forest carbon budget, 1995–2020," Ecological Modelling, Elsevier, vol. 266(C), pages 144-171.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:325:y:2016:i:c:p:35-46. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.