IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v222y2011i14p2385-2392.html
   My bibliography  Save this article

Embodied energy and emergy evaluation of a typical biodiesel production chain in China

Author

Listed:
  • Ju, L.P.
  • Chen, B.

Abstract

Biodiesel from non-grain feedstock has been considered as one of the proper substitutes for fossil fuels associated with a series of activities emerging in China in order to meet the resource shortage and develop the energy crops. This paper presents an ecological accounting framework based on embodied energy, emergy, and CO2 emission for the whole production chain of biodiesel made from Jatropha curcas L. (JCL) oil. The energy and materials invested in and CO2 emission from the whole process, including cropping, transportation, extraction, and production, are accounted and calculated. Also, EmCO2, the ratio of real CO2 released to the emergy-based sustainability indicator per joule biodiesel, is proposed in this paper to present a new goal function for low-carbon system optimization. Finally, the results are compared with those of the bioethanol (wheat) production in Henan Province, China, and bioethanol (corn) production in Italy in view of the indices of embodied energy, emergy and CO2 emissions and EmCO2.

Suggested Citation

  • Ju, L.P. & Chen, B., 2011. "Embodied energy and emergy evaluation of a typical biodiesel production chain in China," Ecological Modelling, Elsevier, vol. 222(14), pages 2385-2392.
  • Handle: RePEc:eee:ecomod:v:222:y:2011:i:14:p:2385-2392
    DOI: 10.1016/j.ecolmodel.2010.07.021
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380010003765
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2010.07.021?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sciubba, Enrico & Ulgiati, Sergio, 2005. "Emergy and exergy analyses: Complementary methods or irreducible ideological options?," Energy, Elsevier, vol. 30(10), pages 1953-1988.
    2. Carraretto, C. & Macor, A. & Mirandola, A. & Stoppato, A. & Tonon, S., 2004. "Biodiesel as alternative fuel: Experimental analysis and energetic evaluations," Energy, Elsevier, vol. 29(12), pages 2195-2211.
    3. Dong, Xiaobin & Ulgiati, Sergio & Yan, Maochao & Zhang, Xinshi & Gao, Wangsheng, 2008. "Energy and eMergy evaluation of bioethanol production from wheat in Henan Province, China," Energy Policy, Elsevier, vol. 36(10), pages 3882-3892, October.
    4. Yang, Z.F. & Jiang, M.M. & Chen, B. & Zhou, J.B. & Chen, G.Q. & Li, S.C., 2010. "Solar emergy evaluation for Chinese economy," Energy Policy, Elsevier, vol. 38(2), pages 875-886, February.
    5. Brown, M. T. & Herendeen, R. A., 1996. "Embodied energy analysis and EMERGY analysis: a comparative view," Ecological Economics, Elsevier, vol. 19(3), pages 219-235, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yang, Jin & Chen, Bin, 2016. "Emergy-based sustainability evaluation of wind power generation systems," Applied Energy, Elsevier, vol. 177(C), pages 239-246.
    2. Zhang, Binyue & Chen, Bin, 2017. "Sustainability accounting of a household biogas project based on emergy," Applied Energy, Elsevier, vol. 194(C), pages 819-831.
    3. Zhang, Xiaohong & Wu, Liqian & Zhang, Rong & Deng, Shihuai & Zhang, Yanzong & Wu, Jun & Li, Yuanwei & Lin, Lili & Li, Li & Wang, Yinjun & Wang, Lilin, 2013. "Evaluating the relationships among economic growth, energy consumption, air emissions and air environmental protection investment in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 18(C), pages 259-270.
    4. Yang, Qing & Han, Fei & Chen, Yingquan & Yang, Haiping & Chen, Hanping, 2016. "Greenhouse gas emissions of a biomass-based pyrolysis plant in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1580-1590.
    5. Qingsong Wang & Hongkun Xiao & Qiao Ma & Xueliang Yuan & Jian Zuo & Jian Zhang & Shuguang Wang & Mansen Wang, 2020. "Review of Emergy Analysis and Life Cycle Assessment: Coupling Development Perspective," Sustainability, MDPI, vol. 12(1), pages 1-13, January.
    6. Li, Linjun & Lu, Hongfang & Tilley, David R. & Qiu, Guoyu, 2015. "Reprint of “Effect of time scale on accounting for renewable emergy in ecosystems located in humid and arid climates”," Ecological Modelling, Elsevier, vol. 315(C), pages 88-95.
    7. Chen, Shaoqing & Chen, Bin, 2014. "Energy efficiency and sustainability of complex biogas systems: A 3-level emergetic evaluation," Applied Energy, Elsevier, vol. 115(C), pages 151-163.
    8. Li, Linjun & Lu, Hongfang & Tilley, David R. & Qiu, Guoyu, 2014. "Effect of time scale on accounting for renewable emergy in ecosystems located in humid and arid climates," Ecological Modelling, Elsevier, vol. 287(C), pages 1-8.
    9. Yang, Jin & Chen, Bin, 2014. "Emergy analysis of a biogas-linked agricultural system in rural China – A case study in Gongcheng Yao Autonomous County," Applied Energy, Elsevier, vol. 118(C), pages 173-182.
    10. Lupinacci, Daniel M. & Bonilla, Silvia H., 2018. "Exploring approaches and dimensions of human transformity through an educational case," Ecological Modelling, Elsevier, vol. 368(C), pages 336-343.
    11. Zhang, XiaoHong & Hu, He & Zhang, Rong & Deng, ShiHuai, 2014. "Interactions between China׳s economy, energy and the air emissions and their policy implications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 624-638.
    12. Qiang Wang & Thomas Dogot & Xianlei Huang & Linna Fang & Changbin Yin, 2020. "Coupling of Rural Energy Structure and Straw Utilization: Based on Cases in Hebei, China," Sustainability, MDPI, vol. 12(3), pages 1-21, January.
    13. Yang, Q. & Chen, G.Q. & Liao, S. & Zhao, Y.H. & Peng, H.W. & Chen, H.P., 2013. "Environmental sustainability of wind power: An emergy analysis of a Chinese wind farm," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 229-239.
    14. Saladini, Fabrizio & Patrizi, Nicoletta & Pulselli, Federico M. & Marchettini, Nadia & Bastianoni, Simone, 2016. "Guidelines for emergy evaluation of first, second and third generation biofuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 221-227.
    15. Wang, Xibo & Wei, Wendong & Ge, Jianping & Wu, Bin & Bu, Wei & Li, Jiashuo & Yao, Mingtao & Guan, Qing, 2017. "Embodied rare earths flow between industrial sectors in China: A complex network approach," Resources, Conservation & Recycling, Elsevier, vol. 125(C), pages 363-374.
    16. Chen, Shaoqing & Chen, Bin, 2012. "Sustainability and future alternatives of biogas-linked agrosystem (BLAS) in China: An emergy synthesis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 3948-3959.
    17. Zhang, Meimei & Wang, Zhifeng & Xu, Chao & Jiang, Hui, 2012. "Embodied energy and emergy analyses of a concentrating solar power (CSP) system," Energy Policy, Elsevier, vol. 42(C), pages 232-238.
    18. An, Qier & An, Haizhong & Wang, Lang & Gao, Xiangyun & Lv, Na, 2015. "Analysis of embodied exergy flow between Chinese industries based on network theory," Ecological Modelling, Elsevier, vol. 318(C), pages 26-35.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Giannetti, B.F. & Almeida, C.M.V.B. & Bonilla, S.H., 2010. "Comparing emergy accounting with well-known sustainability metrics: The case of Southern Cone Common Market, Mercosur," Energy Policy, Elsevier, vol. 38(7), pages 3518-3526, July.
    2. Amaral, Luís P. & Martins, Nélson & Gouveia, Joaquim B., 2016. "A review of emergy theory, its application and latest developments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 882-888.
    3. Jiang, M.M. & Chen, B., 2011. "Integrated urban ecosystem evaluation and modeling based on embodied cosmic exergy," Ecological Modelling, Elsevier, vol. 222(13), pages 2149-2165.
    4. Marvuglia, Antonino & Benetto, Enrico & Rios, Gordon & Rugani, Benedetto, 2013. "SCALE: Software for CALculating Emergy based on life cycle inventories," Ecological Modelling, Elsevier, vol. 248(C), pages 80-91.
    5. Saladini, Fabrizio & Patrizi, Nicoletta & Pulselli, Federico M. & Marchettini, Nadia & Bastianoni, Simone, 2016. "Guidelines for emergy evaluation of first, second and third generation biofuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 221-227.
    6. Ren, Siyue & Feng, Xiao & Wang, Yufei, 2021. "Emergy evaluation of the integrated gasification combined cycle power generation systems with a carbon capture system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
    7. Baral, Anil & Bakshi, Bhavik R., 2010. "Emergy analysis using US economic input–output models with applications to life cycles of gasoline and corn ethanol," Ecological Modelling, Elsevier, vol. 221(15), pages 1807-1818.
    8. Bastianoni, S. & Facchini, A. & Susani, L. & Tiezzi, E., 2007. "Emergy as a function of exergy," Energy, Elsevier, vol. 32(7), pages 1158-1162.
    9. Almeida, C.M.V.B. & Borges, D. & Bonilla, S.H. & Giannetti, B.F., 2010. "Identifying improvements in water management of bus-washing stations in Brazil," Resources, Conservation & Recycling, Elsevier, vol. 54(11), pages 821-831.
    10. Zhang, Xiao Hong & Deng, ShiHuai & Jiang, WenJu & Zhang, YanZong & Peng, Hong & Li, Li & Yang, Gang & Li, YuanWei, 2010. "Emergy evaluation of the sustainability of two industrial systems based on wastes exchanges," Resources, Conservation & Recycling, Elsevier, vol. 55(2), pages 182-195.
    11. Hoang, Viet-Ngu & Rao, D.S. Prasada, 2010. "Measuring and decomposing sustainable efficiency in agricultural production: A cumulative exergy balance approach," Ecological Economics, Elsevier, vol. 69(9), pages 1765-1776, July.
    12. Gasparatos, Alexandros & El-Haram, Mohamed & Horner, Malcolm, 2009. "The argument against a reductionist approach for measuring sustainable development performance and the need for methodological pluralism," Accounting forum, Elsevier, vol. 33(3), pages 245-256.
    13. Chen, Shaoqing & Chen, Bin, 2014. "Energy efficiency and sustainability of complex biogas systems: A 3-level emergetic evaluation," Applied Energy, Elsevier, vol. 115(C), pages 151-163.
    14. Liu, Xinyu & Liu, Gengyuan & Yang, Zhifeng & Chen, Bin & Ulgiati, Sergio, 2016. "Comparing national environmental and economic performances through emergy sustainability indicators: Moving environmental ethics beyond anthropocentrism toward ecocentrism," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1532-1542.
    15. Evariste Rutebuka & Lixiao Zhang & Ernest Frimpong Asamoah & Mingyue Pang & Emmanuel Rukundo, 2018. "Resource Dynamism of the Rwandan Economy: An Emergy Approach," Sustainability, MDPI, vol. 10(6), pages 1-19, May.
    16. Deymi-Dashtebayaz, Mahdi & Norani, Marziye, 2021. "Sustainability assessment and emergy analysis of employing the CCHP system under two different scenarios in a data center," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    17. Bastianoni, Simone & Morandi, Fabiana & Flaminio, Tommaso & Pulselli, Riccardo M. & Tiezzi, Elisa B.P., 2011. "Emergy and emergy algebra explained by means of ingenuous set theory," Ecological Modelling, Elsevier, vol. 222(16), pages 2903-2907.
    18. Liao, Wenjie & Heijungs, Reinout & Huppes, Gjalt, 2012. "Thermodynamic analysis of human–environment systems: A review focused on industrial ecology," Ecological Modelling, Elsevier, vol. 228(C), pages 76-88.
    19. Liao, Wenjie & Heijungs, Reinout & Huppes, Gjalt, 2011. "Is bioethanol a sustainable energy source? An energy-, exergy-, and emergy-based thermodynamic system analysis," Renewable Energy, Elsevier, vol. 36(12), pages 3479-3487.
    20. Hoang, Viet-Ngu & Alauddin, Mohammad, 2009. "Analysis of Agricultural Sustainability: A Review of Exergy Methodologies and Their Application in OECD," MPRA Paper 90406, University Library of Munich, Germany, revised 15 Mar 2010.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:222:y:2011:i:14:p:2385-2392. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.