IDEAS home Printed from https://ideas.repec.org/a/eee/ecolec/v95y2013icp159-170.html
   My bibliography  Save this article

Conserving metapopulations in human-altered landscapes at the urban–rural fringe

Author

Listed:
  • Bauer, Dana Marie
  • Swallow, Stephen K.

Abstract

The conversion of natural areas to human-dominated land uses results in loss, degradation, and fragmentation of wildlife habitat which often lead to species endangerment and local extinction. The risk of endangerment may be particularly acute for species that exist as metapopulations in which viability of the species is contingent upon dispersal of individuals among local sub-populations. This paper uses an optimization framework to investigate the problem of conserving metapopulations residing in areas at the urban–rural fringe. We compare the optimal allocation of preservation to outcomes of four other policy alternatives including the reserve-site-selection option that fully preserves habitat patches while allowing full development of the intervening dispersal matrix. In general, the optimal allocation includes some amount of preservation in both habitat patches and dispersal matrix, with the level of protection typically greater in habitat patches. The reserve-site-selection conservation option is optimal in only a few cases. Heterogeneity in terms of land use and landscape structure adds complexity to the optimal solution such that no one policy works well across all land units and in situations where the landscape structure is skewed, full protection of some land units and full development of others becomes more common.

Suggested Citation

  • Bauer, Dana Marie & Swallow, Stephen K., 2013. "Conserving metapopulations in human-altered landscapes at the urban–rural fringe," Ecological Economics, Elsevier, vol. 95(C), pages 159-170.
  • Handle: RePEc:eee:ecolec:v:95:y:2013:i:c:p:159-170
    DOI: 10.1016/j.ecolecon.2013.08.013
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S092180091300270X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolecon.2013.08.013?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Patrick J. Walsh & J. Walter Milon & David O. Scrogin, 2011. "The Spatial Extent of Water Quality Benefits in Urban Housing Markets," Land Economics, University of Wisconsin Press, vol. 87(4), pages 628-644.
    2. Bauer, Dana Marie & Swallow, Stephen K. & Paton, Peter W.C., 2010. "Cost-effective species conservation in exurban communities: A spatial analysis," Resource and Energy Economics, Elsevier, vol. 32(2), pages 180-202, April.
    3. Spring, Daniel A. & Kennedy, John O.S., 2005. "Existence value and optimal timber-wildlife management in a flammable multistand forest," Ecological Economics, Elsevier, vol. 55(3), pages 365-379, November.
    4. Heimlich, Ralph E. & Anderson, William D., 2001. "Development At The Urban Fringe And Beyond: Impacts On Agriculture And Rural Land," Agricultural Economic Reports 33943, United States Department of Agriculture, Economic Research Service.
    5. Bulte, Erwin H. & van Kooten, G. Cornelis, 1999. "Metapopulation dynamics and stochastic bioeconomic modeling," Ecological Economics, Elsevier, vol. 30(2), pages 293-299, August.
    6. Holland, Daniel S. & Herrera, Guillermo E., 2012. "The impact of age structure, uncertainty, and asymmetric spatial dynamics on regulatory performance in a fishery metapopulation," Ecological Economics, Elsevier, vol. 77(C), pages 207-218.
    7. Ilkka Hanski & Otso Ovaskainen, 2000. "The metapopulation capacity of a fragmented landscape," Nature, Nature, vol. 404(6779), pages 755-758, April.
    8. Groeneveld, Rolf A., 2010. "Species-specific spatial characteristics in reserve site selection," Ecological Economics, Elsevier, vol. 69(12), pages 2307-2314, October.
    9. Rolf Groeneveld & Carla Grashof-Bokdam & Ekko van Ierland, 2005. "Metapopulations in Agricultural Landscapes: A Spatially Explicit Trade-off Analysis," Journal of Environmental Planning and Management, Taylor & Francis Journals, vol. 48(4), pages 527-547.
    10. Michael T. Bond & Vicky L. Seiler & Michael J. Seiler, 2002. "Residential Real Estate Prices: A Room with a View," Journal of Real Estate Research, American Real Estate Society, vol. 23(1/2), pages 129-138.
    11. Sanchirico, James N. & Wilen, James E., 1999. "Bioeconomics of Spatial Exploitation in a Patchy Environment," Journal of Environmental Economics and Management, Elsevier, vol. 37(2), pages 129-150, March.
    12. Stephen Polasky & Jeffrey D. Camm & Brian Garber-Yonts, 2001. "Selecting Biological Reserves Cost-Effectively: An Application to Terrestrial Vertebrate Conservation in Oregon," Land Economics, University of Wisconsin Press, vol. 77(1), pages 68-78.
    13. Yang, Wanhong & Khanna, Madhu & Farnsworth, Richard & Onal, Hayri, 2003. "Integrating economic, environmental and GIS modeling to target cost effective land retirement in multiple watersheds," Ecological Economics, Elsevier, vol. 46(2), pages 249-267, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jing Yang & Xinyu Zhu & Wei Chen & Yizhong Sun & Jie Zhu, 2023. "Modeling land-use change using partitioned vector cellular automata while considering urban spatial structure," Environment and Planning B, , vol. 50(8), pages 2273-2293, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bauer, Dana Marie & Swallow, Stephen K. & Paton, Peter W.C., 2010. "Cost-effective species conservation in exurban communities: A spatial analysis," Resource and Energy Economics, Elsevier, vol. 32(2), pages 180-202, April.
    2. Bauer, Dana Marie & Swallow, Stephen K., 2005. "Allocation of Land at the Rural-Urban Fringe Using a Spatially-Realistic Ecosystem Constraint," 2005 Annual meeting, July 24-27, Providence, RI 19394, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    3. Eppink, Florian V. & van den Bergh, Jeroen C.J.M., 2007. "Ecological theories and indicators in economic models of biodiversity loss and conservation: A critical review," Ecological Economics, Elsevier, vol. 61(2-3), pages 284-293, March.
    4. Smith, Martin D. & Sanchirico, James N. & Wilen, James E., 2009. "The economics of spatial-dynamic processes: Applications to renewable resources," Journal of Environmental Economics and Management, Elsevier, vol. 57(1), pages 104-121, January.
    5. Jay Mittal, 2017. "Valuing Visual Accessibility of Scenic Landscapes in a Single Family Housing Market: A Spatial Hedonic Approach," ERES eres2017_1, European Real Estate Society (ERES).
    6. Johnston, Robert J. & Ramachandran, Mahesh & Schultz, Eric T. & Segerson, Kathleen & Besedin, Elena Y., 2011. "Characterizing Spatial Pattern in Ecosystem Service Values when Distance Decay Doesn’t Apply: Choice Experiments and Local Indicators of Spatial Association," 2011 Annual Meeting, July 24-26, 2011, Pittsburgh, Pennsylvania 103374, Agricultural and Applied Economics Association.
    7. Jeffrey P. Cohen & Robert G. Cromley & Kevin T. Banach, 2015. "Are Homes Near Water Bodies and Wetlands Worth More or Less? An Analysis of Housing Prices in One Connecticut Town," Growth and Change, Wiley Blackwell, vol. 46(1), pages 114-132, March.
    8. R.J. Imeson & J.C.J.M. van den Bergh, 2004. "A Bioeconomic Analysis of a Shellfishery: The Effects of Recruitment and Habitat in a Metapopulation Model," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 27(1), pages 65-86, January.
    9. Brock, William & Xepapadeas, Anastasios, 2010. "Pattern formation, spatial externalities and regulation in coupled economic-ecological systems," Journal of Environmental Economics and Management, Elsevier, vol. 59(2), pages 149-164, March.
    10. Jiang, Yong & Swallow, Stephen K., 2017. "Impact Fees Coupled With Conservation Payments to Sustain Ecosystem Structure: A Conceptual and Numerical Application at the Urban-Rural Fringe," Ecological Economics, Elsevier, vol. 136(C), pages 136-147.
    11. Richard T. Melstrom & David W. Shanafelt & Carson J. Reeling, 2022. "Coordinating investments in habitat management and economic development," Journal of Bioeconomics, Springer, vol. 24(1), pages 67-91, April.
    12. Maarten Punt & Hans-Peter Weikard & Ekko Ierland & Jan Stel, 2012. "Large Scale Marine Protected Areas for Biodiversity Conservation Along a Linear Gradient: Cooperation, Strategic Behavior or Conservation Autarky?," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 53(2), pages 203-228, October.
    13. Gaaff, Aris & Reinhard, Stijn, 2012. "Incorporating the value of ecological networks into cost–benefit analysis to improve spatially explicit land-use planning," Ecological Economics, Elsevier, vol. 73(C), pages 66-74.
    14. Sanchirico, James N. & Wilen, James E., 2000. "Dynamics of Spatial Exploitation: A Metapopulation Approach," Discussion Papers 10513, Resources for the Future.
    15. David Aadland & Charles Sims & David Finnoff, 2015. "Spatial Dynamics of Optimal Management in Bioeconomic Systems," Computational Economics, Springer;Society for Computational Economics, vol. 45(4), pages 545-577, April.
    16. Billionnet, Alain, 2013. "Mathematical optimization ideas for biodiversity conservation," European Journal of Operational Research, Elsevier, vol. 231(3), pages 514-534.
    17. Legras, Sophie, 2015. "Correlated environmental impacts of wastewater management in a spatial context," Regional Science and Urban Economics, Elsevier, vol. 52(C), pages 83-92.
    18. Perhans, Karin & Glöde, Dan & Gilbertsson, Jessica & Persson, Anette & Gustafsson, Lena, 2011. "Fine-scale conservation planning outside of reserves: Cost-effective selection of retention patches at final harvest," Ecological Economics, Elsevier, vol. 70(4), pages 771-777, February.
    19. Johst, Karin & Drechsler, Martin & Watzold, Frank, 2002. "An ecological-economic modelling procedure to design compensation payments for the efficient spatio-temporal allocation of species protection measures," Ecological Economics, Elsevier, vol. 41(1), pages 37-49, April.
    20. Irwin, Nicholas B. & Klaiber, H. Allen & Irwin, Elena G., 2017. "Do Stormwater Basins Generate co-Benefits? Evidence from Baltimore County, Maryland," Ecological Economics, Elsevier, vol. 141(C), pages 202-212.

    More about this item

    Keywords

    Conservation planning; Ecological–economic modeling; Ecosystem production function; Land use; Metapopulation; Policy analysis;
    All these keywords.

    JEL classification:

    • Q24 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Renewable Resources and Conservation - - - Land
    • Q57 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Ecological Economics
    • R14 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - General Regional Economics - - - Land Use Patterns

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecolec:v:95:y:2013:i:c:p:159-170. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ecolecon .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.