IDEAS home Printed from https://ideas.repec.org/a/eee/ecolec/v207y2023ics0921800923000277.html
   My bibliography  Save this article

Whose house is on fire? Identifying socio-demographic and housing characteristics driving differences in the UK household CO2 emissions

Author

Listed:
  • Schuster, Antonia
  • Lindner, Michael
  • Otto, Ilona M.

Abstract

Achieving the goals outlined in the Paris agreement requires significant reductions in national carbon emissions. To fairly distribute the burden of mitigation, a detailed understanding of the social realities of emitters is needed. This sector-specific and sub-regional study was carried out to examine housing energy emissions in the UK and to obtain detailed information about the socioeconomic profiles of emitters. To account for the embedded nature of individuals in social groups and the social context, we applied the conceptual approach of socio-metabolic class theory. This theory posits that carbon emissions and the level of human agency are unequally distributed within the society. As a first attempt, the theory is operationalised using CO2 emission quartiles as central units of descriptive analysis. We find significant differences between these classes, and particularly in terms of cohabitation type, home ownership, and social vulnerability factors. Complementary results from a multivariate regression analysis indicate that the main determinants of housing carbon emissions are living space, household size, and the use of heating oil. We conclude by describing the contribution of our findings to socio-metabolic class theory, outlining future directions for research at the intersection of social class and ecology, and policy implications related to a low-carbon transition.

Suggested Citation

  • Schuster, Antonia & Lindner, Michael & Otto, Ilona M., 2023. "Whose house is on fire? Identifying socio-demographic and housing characteristics driving differences in the UK household CO2 emissions," Ecological Economics, Elsevier, vol. 207(C).
  • Handle: RePEc:eee:ecolec:v:207:y:2023:i:c:s0921800923000277
    DOI: 10.1016/j.ecolecon.2023.107764
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0921800923000277
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolecon.2023.107764?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. van Buuren, Stef & Groothuis-Oudshoorn, Karin, 2011. "mice: Multivariate Imputation by Chained Equations in R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 45(i03).
    2. Gill, Bernhard & Moeller, Simon, 2018. "GHG Emissions and the Rural-Urban Divide. A Carbon Footprint Analysis Based on the German Official Income and Expenditure Survey," Ecological Economics, Elsevier, vol. 145(C), pages 160-169.
    3. Age Poom & Rein Ahas, 2016. "How Does the Environmental Load of Household Consumption Depend on Residential Location?," Sustainability, MDPI, vol. 8(9), pages 1-18, August.
    4. Arnold Tukker & Maurie J. Cohen & Klaus Hubacek & Oksana Mont, 2010. "The Impacts of Household Consumption and Options for Change," Journal of Industrial Ecology, Yale University, vol. 14(1), pages 13-30, January.
    5. Henri C. Moll & Klaas Jan Noorman & Rixt Kok & Rebecka Engström & Harald Throne‐Holst & Charlotte Clark, 2005. "Pursuing More Sustainable Consumption by Analyzing Household Metabolism in European Countries and Cities," Journal of Industrial Ecology, Yale University, vol. 9(1‐2), pages 259-275, January.
    6. Otto, Ilona M. & Wiedermann, Marc & Cremades, Roger & Donges, Jonathan F. & Auer, Cornelia & Lucht, Wolfgang, 2020. "Human agency in the Anthropocene," Ecological Economics, Elsevier, vol. 167(C).
    7. Gough, Ian & Abdallah, Saamah & Johnson, Viki & Ryan-Collins, Josh & Smith, Cindy, 2011. "The distribution of total embodied greenhouse gas emissions by households in the UK, and some implications for social policy," LSE Research Online Documents on Economics 36562, London School of Economics and Political Science, LSE Library.
    8. Thomas Wiedmann & Manfred Lenzen & Lorenz T. Keyßer & Julia K. Steinberger, 2020. "Scientists’ warning on affluence," Nature Communications, Nature, vol. 11(1), pages 1-10, December.
    9. Christopher L. Ambrey & Peter Daniels, 2017. "Happiness and footprints: assessing the relationship between individual well-being and carbon footprints," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 19(3), pages 895-920, June.
    10. Yannick Oswald & Anne Owen & Julia K. Steinberger, 2020. "Publisher Correction: Large inequality in international and intranational energy footprints between income groups and across consumption categories," Nature Energy, Nature, vol. 5(4), pages 349-349, April.
    11. Diana Ivanova & Lucie Middlemiss, 2021. "Characterizing the energy use of disabled people in the European Union towards inclusion in the energy transition," Nature Energy, Nature, vol. 6(12), pages 1188-1197, December.
    12. Kai Fang & Reinout Heijungs & Zheng Duan & Geert R. De Snoo, 2015. "The Environmental Sustainability of Nations: Benchmarking the Carbon, Water and Land Footprints against Allocated Planetary Boundaries," Sustainability, MDPI, vol. 7(8), pages 1-21, August.
    13. Harry C. Wilting & Aafke M. Schipper & Olga Ivanova & Diana Ivanova & Mark A. J. Huijbregts, 2021. "Subnational greenhouse gas and land‐based biodiversity footprints in the European Union," Journal of Industrial Ecology, Yale University, vol. 25(1), pages 79-94, February.
    14. Lucas Chancel, 2022. "Global carbon inequality over 1990–2019," Nature Sustainability, Nature, vol. 5(11), pages 931-938, November.
    15. Büchs, Milena & Schnepf, Sylke V., 2013. "Who emits most? Associations between socio-economic factors and UK households' home energy, transport, indirect and total CO2 emissions," Ecological Economics, Elsevier, vol. 90(C), pages 114-123.
    16. Yannick Oswald & Anne Owen & Julia K. Steinberger, 2020. "Large inequality in international and intranational energy footprints between income groups and across consumption categories," Nature Energy, Nature, vol. 5(3), pages 231-239, March.
    17. Isaksen, Elisabeth T. & Narbel, Patrick A., 2017. "A carbon footprint proportional to expenditure - A case for Norway?," Ecological Economics, Elsevier, vol. 131(C), pages 152-165.
    18. Ala-Mantila, Sanna & Heinonen, Jukka & Junnila, Seppo, 2014. "Relationship between urbanization, direct and indirect greenhouse gas emissions, and expenditures: A multivariate analysis," Ecological Economics, Elsevier, vol. 104(C), pages 129-139.
    19. Ilona M. Otto & Kyoung Mi Kim & Nika Dubrovsky & Wolfgang Lucht, 2019. "Shift the focus from the super-poor to the super-rich," Nature Climate Change, Nature, vol. 9(2), pages 82-84, February.
    20. Lenzen, Manfred & Wier, Mette & Cohen, Claude & Hayami, Hitoshi & Pachauri, Shonali & Schaeffer, Roberto, 2006. "A comparative multivariate analysis of household energy requirements in Australia, Brazil, Denmark, India and Japan," Energy, Elsevier, vol. 31(2), pages 181-207.
    21. Fremstad, Anders & Underwood, Anthony & Zahran, Sammy, 2018. "The Environmental Impact of Sharing: Household and Urban Economies in CO2 Emissions," Ecological Economics, Elsevier, vol. 145(C), pages 137-147.
    22. Wiedenhofer, Dominik & Lenzen, Manfred & Steinberger, Julia K., 2013. "Energy requirements of consumption: Urban form, climatic and socio-economic factors, rebounds and their policy implications," Energy Policy, Elsevier, vol. 63(C), pages 696-707.
    23. Bastien Girod & Peter De Haan, 2010. "More or Better? A Model for Changes in Household Greenhouse Gas Emissions due to Higher Income," Journal of Industrial Ecology, Yale University, vol. 14(1), pages 31-49, January.
    24. Haberl, Helmut & Schmid, Martin & Haas, Willi & Wiedenhofer, Dominik & Rau, Henrike & Winiwarter, Verena, 2021. "Stocks, flows, services and practices: Nexus approaches to sustainable social metabolism," Ecological Economics, Elsevier, vol. 182(C).
    25. Daniel W. O’Neill & Andrew L. Fanning & William F. Lamb & Julia K. Steinberger, 2018. "A good life for all within planetary boundaries," Nature Sustainability, Nature, vol. 1(2), pages 88-95, February.
    26. Anne Owen & John Barrett, 2020. "Reducing inequality resulting from UK low-carbon policy," Climate Policy, Taylor & Francis Journals, vol. 20(10), pages 1193-1208, November.
    27. repec:cep:sticas:/152 is not listed on IDEAS
    28. Saamah Abdallah & Ian Gough & Victoria Johnson & Josh Ryan-Collins & Cindy Smith, 2011. "The distribution of total greenhouse gas emissions by households in the UK, and some implications for social policy," CASE Papers case152, Centre for Analysis of Social Exclusion, LSE.
    29. Jason Hickel, 2019. "Is it possible to achieve a good life for all within planetary boundaries?," Third World Quarterly, Taylor & Francis Journals, vol. 40(1), pages 18-35, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhao, Mengxue & Yuan, Zhihang & Chan, Hon S., 2023. "Housing wealth and household carbon emissions: The role of homeownership in China," Ecological Economics, Elsevier, vol. 212(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pottier, Antonin, 2022. "Expenditure elasticity and income elasticity of GHG emissions: A survey of literature on household carbon footprint," Ecological Economics, Elsevier, vol. 192(C).
    2. Lévay, Petra Zsuzsa & Vanhille, Josefine & Goedemé, Tim & Verbist, Gerlinde, 2021. "The association between the carbon footprint and the socio-economic characteristics of Belgian households," Ecological Economics, Elsevier, vol. 186(C).
    3. Baltruszewicz, Marta & Steinberger, Julia K. & Paavola, Jouni & Ivanova, Diana & Brand-Correa, Lina I. & Owen, Anne, 2023. "Social outcomes of energy use in the United Kingdom: Household energy footprints and their links to well-being," Ecological Economics, Elsevier, vol. 205(C).
    4. Pottier, Antonin & Combet, Emmanuel & Cayla, Jean-Michel & de Lauretis, Simona & Nadaud, Franck, 2021. "Who emits CO2 ? Landscape of ecological inequalities in France from a critical perspective," FEEM Working Papers 311053, Fondazione Eni Enrico Mattei (FEEM).
    5. Heidi Bruderer Enzler & Andreas Diekmann, 2015. "Environmental Impact and Pro-Environmental Behavior: Correlations to Income and Environmental Concern," ETH Zurich Sociology Working Papers 9, ETH Zurich, Chair of Sociology.
    6. Theine, Hendrik & Humer, Stefan & Moser, Mathias & Schnetzer, Matthias, 2022. "Emissions inequality: Disparities in income, expenditure, and the carbon footprint in Austria," Ecological Economics, Elsevier, vol. 197(C).
    7. Benedikt Bruckner & Klaus Hubacek & Yuli Shan & Honglin Zhong & Kuishuang Feng, 2022. "Impacts of poverty alleviation on national and global carbon emissions," Nature Sustainability, Nature, vol. 5(4), pages 311-320, April.
    8. Diana Ivanova & Milena Büchs, 2020. "Household Sharing for Carbon and Energy Reductions: The Case of EU Countries," Energies, MDPI, vol. 13(8), pages 1-28, April.
    9. Age Poom & Rein Ahas, 2016. "How Does the Environmental Load of Household Consumption Depend on Residential Location?," Sustainability, MDPI, vol. 8(9), pages 1-18, August.
    10. Lévay, Petra Zsuzsa & Goedemé, Tim & Verbist, Gerlinde, 2023. "Income and expenditure elasticity of household carbon footprints. Some methodological considerations," Ecological Economics, Elsevier, vol. 212(C).
    11. Jiang, Yida & Long, Yin & Liu, Qiaoling & Dowaki, Kiyoshi & Ihara, Tomohiko, 2020. "Carbon emission quantification and decarbonization policy exploration for the household sector - Evidence from 51 Japanese cities," Energy Policy, Elsevier, vol. 140(C).
    12. Stefano Di Bucchianico & Federica Cappelli, 2021. "Exploring the theoretical link between profitability and luxury emissions," Working Papers PKWP2114, Post Keynesian Economics Society (PKES).
    13. Lena Kilian & Anne Owen & Andy Newing & Diana Ivanova, 2022. "Exploring Transport Consumption-Based Emissions: Spatial Patterns, Social Factors, Well-Being, and Policy Implications," Sustainability, MDPI, vol. 14(19), pages 1-26, September.
    14. Ryu Koide & Michael Lettenmeier & Satoshi Kojima & Viivi Toivio & Aryanie Amellina & Lewis Akenji, 2019. "Carbon Footprints and Consumer Lifestyles: An Analysis of Lifestyle Factors and Gap Analysis by Consumer Segment in Japan," Sustainability, MDPI, vol. 11(21), pages 1-25, October.
    15. Ivanova, Diana & Büchs, Milena, 2022. "Implications of shrinking household sizes for meeting the 1.5 °C climate targets," Ecological Economics, Elsevier, vol. 202(C).
    16. Tilov, Ivan & Farsi, Mehdi & Volland, Benjamin, 2019. "Interactions in Swiss households’ energy demand: A holistic approach," Energy Policy, Elsevier, vol. 128(C), pages 136-149.
    17. Fouquet, Roger & O'Garra, Tanya, 2022. "In pursuit of progressive and effective climate policies: Comparing an air travel carbon tax and a frequent flyer levy," Energy Policy, Elsevier, vol. 171(C).
    18. O'Garra, Tanya & Fouquet, Roger, 2022. "Willingness to reduce travel consumption to support a low-carbon transition beyond COVID-19," Ecological Economics, Elsevier, vol. 193(C).
    19. Berthe, Alexandre & Elie, Luc, 2015. "Mechanisms explaining the impact of economic inequality on environmental deterioration," Ecological Economics, Elsevier, vol. 116(C), pages 191-200.
    20. Smetschka, Barbara & Wiedenhofer, Dominik & Egger, Claudine & Haselsteiner, Edeltraud & Moran, Daniel & Gaube, Veronika, 2019. "Time Matters: The Carbon Footprint of Everyday Activities in Austria," Ecological Economics, Elsevier, vol. 164(C), pages 1-1.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecolec:v:207:y:2023:i:c:s0921800923000277. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ecolecon .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.