IDEAS home Printed from https://ideas.repec.org/a/eee/ecofin/v68y2023ics1062940823001006.html
   My bibliography  Save this article

Cross-market information transmission and stock market volatility prediction

Author

Listed:
  • Wang, Yide
  • Chen, Zan
  • Ji, Xiaodong

Abstract

The deep integration of global economic and financial activities accelerates the information transmission across financial markets. The cross-market information has become a crucial factor to influence the stock market fluctuation. This paper investigates the explanatory power and impacting mechanism of cross-market information flow in the prediction of Chinese stock market volatility. The empirical results show that the cross-market information flow exhibits significant linear and nonlinear influences on Chinese stock market volatility, and it also appears term-heterogeneous on the prediction accuracy, i.e., the cross-market information flow significantly contributes to medium-term and long-term prediction of Chinese stock market volatility, and the improvement of prediction accuracy is mainly due to nonlinear mechanism, whereas the cross-market information flow performs less value for short-term volatility prediction.

Suggested Citation

  • Wang, Yide & Chen, Zan & Ji, Xiaodong, 2023. "Cross-market information transmission and stock market volatility prediction," The North American Journal of Economics and Finance, Elsevier, vol. 68(C).
  • Handle: RePEc:eee:ecofin:v:68:y:2023:i:c:s1062940823001006
    DOI: 10.1016/j.najef.2023.101977
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1062940823001006
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.najef.2023.101977?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Andersen, Torben G & Bollerslev, Tim, 1998. "Answering the Skeptics: Yes, Standard Volatility Models Do Provide Accurate Forecasts," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 885-905, November.
    2. Fama, Eugene F, et al, 1969. "The Adjustment of Stock Prices to New Information," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 10(1), pages 1-21, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Oberndorfer, Ulrich & Schmidt, Peter & Wagner, Marcus & Ziegler, Andreas, 2013. "Does the stock market value the inclusion in a sustainability stock index? An event study analysis for German firms," Journal of Environmental Economics and Management, Elsevier, vol. 66(3), pages 497-509.
    2. Ercan Balaban & Charalambos Th. Constantinou, 2006. "Volatility clustering and event-induced volatility: Evidence from UK mergers and acquisitions," The European Journal of Finance, Taylor & Francis Journals, vol. 12(5), pages 449-453.
    3. Chamil W SENARATHNE & Wei JIANGUO, 2020. "Testing for Heteroskedastic Mixture of Ordinary Least Squares Errors," Journal for Economic Forecasting, Institute for Economic Forecasting, vol. 0(2), pages 73-91, July.
    4. Chortareas, Georgios & Cipollini, Andrea & Eissa, Mohamed Abdelaziz, 2012. "Switching to floating exchange rates, devaluations, and stock returns in MENA countries," International Review of Financial Analysis, Elsevier, vol. 21(C), pages 119-127.
    5. Senarathne, Chamil W & Jayasinghe, Prabhath, 2017. "Information Flow Interpretation of Heteroskedasticity for Capital Asset Pricing: An Expectation-based View of Risk," MPRA Paper 78771, University Library of Munich, Germany, revised 04 Apr 2017.
    6. Hillebrand, Eric & Schnabl, Gunther & Ulu, Yasemin, 2009. "Japanese foreign exchange intervention and the yen-to-dollar exchange rate: A simultaneous equations approach using realized volatility," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 19(3), pages 490-505, July.
    7. Corbet, Shaen & Larkin, Charles & McMullan, Caroline, 2020. "The impact of industrial incidents on stock market volatility," Research in International Business and Finance, Elsevier, vol. 52(C).
    8. Oxelheim, Lars & Rafferty, Michael, 2005. "On the static efficiency of secondary bond markets," Journal of Multinational Financial Management, Elsevier, vol. 15(2), pages 117-135, April.
    9. DAVID E. ALLEN & MICHAEL McALEER & ROBERT J. POWELL & ABHAY K. SINGH, 2018. "Non-Parametric Multiple Change Point Analysis Of The Global Financial Crisis," Annals of Financial Economics (AFE), World Scientific Publishing Co. Pte. Ltd., vol. 13(02), pages 1-23, June.
    10. Kanis Saengchote & Voraprapa Nakavachara & Yishuang Xu, 2023. "Capitalising the Network Externalities of New Land Supply in the Metaverse," PIER Discussion Papers 203, Puey Ungphakorn Institute for Economic Research.
    11. Christophe Chorro & Florian Ielpo & Benoît Sévi, 2017. "The contribution of jumps to forecasting the density of returns," Post-Print halshs-01442618, HAL.
    12. Gkillas, Konstantinos & Gupta, Rangan & Pierdzioch, Christian, 2020. "Forecasting realized oil-price volatility: The role of financial stress and asymmetric loss," Journal of International Money and Finance, Elsevier, vol. 104(C).
    13. Denise M. Keele & Susan DeHart, 2011. "Partners of USEPA Climate Leaders: an Event Study on Stock Performance," Business Strategy and the Environment, Wiley Blackwell, vol. 20(8), pages 485-497, December.
    14. Tihana Škrinjarić, 2019. "Time Varying Spillovers between the Online Search Volume and Stock Returns: Case of CESEE Markets," IJFS, MDPI, vol. 7(4), pages 1-30, October.
    15. Carol Alexander & Anca Dimitriu, 2003. "Equity Indexing: Conitegration and Stock Price Dispersion: A Regime Switiching Approach to market Efficiency," ICMA Centre Discussion Papers in Finance icma-dp2003-02, Henley Business School, University of Reading.
    16. Woerner Jeannette H. C., 2003. "Variational sums and power variation: a unifying approach to model selection and estimation in semimartingale models," Statistics & Risk Modeling, De Gruyter, vol. 21(1), pages 47-68, January.
    17. Grace Lee Ching Yap, 2020. "Optimal Filter Approximations for Latent Long Memory Stochastic Volatility," Computational Economics, Springer;Society for Computational Economics, vol. 56(2), pages 547-568, August.
    18. Raggi, Davide & Bordignon, Silvano, 2012. "Long memory and nonlinearities in realized volatility: A Markov switching approach," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3730-3742.
    19. Manabu Asai & Rangan Gupta & Michael McAleer, 2019. "The Impact of Jumps and Leverage in Forecasting the Co-Volatility of Oil and Gold Futures," Energies, MDPI, vol. 12(17), pages 1-17, September.
    20. Athanasia Gavala & Nikolay Gospodinov & Deming Jiang, 2006. "Forecasting volatility," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 25(6), pages 381-400.

    More about this item

    Keywords

    Cross-market information flow; Realized volatility; Transfer entropy; Machine learning; Linear and nonlinear Granger causality test;
    All these keywords.

    JEL classification:

    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection
    • C58 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Financial Econometrics
    • G15 - Financial Economics - - General Financial Markets - - - International Financial Markets
    • G17 - Financial Economics - - General Financial Markets - - - Financial Forecasting and Simulation

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecofin:v:68:y:2023:i:c:s1062940823001006. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/620163 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.