The economics of data: Using simple model-free volatility in a high-frequency world
Author
Abstract
Suggested Citation
DOI: 10.1016/j.najef.2013.02.011
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Parkinson, Michael, 1980. "The Extreme Value Method for Estimating the Variance of the Rate of Return," The Journal of Business, University of Chicago Press, vol. 53(1), pages 61-65, January.
- Vincent Glode & Richard C. Green & Richard Lowery, 2012.
"Financial Expertise as an Arms Race,"
Journal of Finance, American Finance Association, vol. 67(5), pages 1723-1759, October.
- Glode, V. & Green, R.C. & Lowery, R., 2010. "Financial Expertise as an Arms Race," Other publications TiSEM 7f1ffc85-7ad2-4d99-82a2-b, Tilburg University, School of Economics and Management.
- Glode, V. & Green, R.C. & Lowery, R., 2010. "Financial Expertise as an Arms Race," Discussion Paper 2010-87S, Tilburg University, Center for Economic Research.
- Glode, V. & Green, R.C. & Lowery, R., 2010. "Financial Expertise as an Arms Race," Other publications TiSEM 6316f2ea-660e-4b55-82fc-1, Tilburg University, School of Economics and Management.
- Garman, Mark B & Klass, Michael J, 1980. "On the Estimation of Security Price Volatilities from Historical Data," The Journal of Business, University of Chicago Press, vol. 53(1), pages 67-78, January.
- Sundaresan, S.M., 2000. "Continuous-Time Methods in Finance: A Review and an Assessment," Papers 00-03, Columbia - Graduate School of Business.
- Ray, Bonnie K & Tsay, Ruey S, 2000. "Long-Range Dependence in Daily Stock Volatilities," Journal of Business & Economic Statistics, American Statistical Association, vol. 18(2), pages 254-262, April.
- Baillie, Richard T. & Bollerslev, Tim & Mikkelsen, Hans Ole, 1996.
"Fractionally integrated generalized autoregressive conditional heteroskedasticity,"
Journal of Econometrics, Elsevier, vol. 74(1), pages 3-30, September.
- Tom Doan, "undated". "RATS programs to replicate Baillie, Bollerslev, Mikkelson FIGARCH results," Statistical Software Components RTZ00009, Boston College Department of Economics.
- Breidt, F. Jay & Crato, Nuno & de Lima, Pedro, 1998. "The detection and estimation of long memory in stochastic volatility," Journal of Econometrics, Elsevier, vol. 83(1-2), pages 325-348.
- Yang, Dennis & Zhang, Qiang, 2000. "Drift-Independent Volatility Estimation Based on High, Low, Open, and Close Prices," The Journal of Business, University of Chicago Press, vol. 73(3), pages 477-491, July.
- Andersen, Torben G. & Bollerslev, Tim & Diebold, Francis X. & Ebens, Heiko, 2001. "The distribution of realized stock return volatility," Journal of Financial Economics, Elsevier, vol. 61(1), pages 43-76, July.
- Brownlees, C.T. & Gallo, G.M., 2006.
"Financial econometric analysis at ultra-high frequency: Data handling concerns,"
Computational Statistics & Data Analysis, Elsevier, vol. 51(4), pages 2232-2245, December.
- Christian T. Brownlees & Giampiero Gallo, 2006. "Financial Econometric Analysis at Ultra–High Frequency: Data Handling Concerns," Econometrics Working Papers Archive wp2006_03, Universita' degli Studi di Firenze, Dipartimento di Statistica, Informatica, Applicazioni "G. Parenti".
- Lee, Suzanne S. & Mykland, Per A., 2012. "Jumps in equilibrium prices and market microstructure noise," Journal of Econometrics, Elsevier, vol. 168(2), pages 396-406.
- Baillie, Richard T., 1996. "Long memory processes and fractional integration in econometrics," Journal of Econometrics, Elsevier, vol. 73(1), pages 5-59, July.
- Shimotsu, Katsumi & Phillips, Peter C B, 2002.
"Exact Local Whittle Estimation of Fractional Integration,"
Economics Discussion Papers
8838, University of Essex, Department of Economics.
- Katsumi Shimotsu & Peter C.B. Phillips, 2002. "Exact Local Whittle Estimation of Fractional Integration," Cowles Foundation Discussion Papers 1367, Cowles Foundation for Research in Economics, Yale University, revised Jul 2004.
- Diebold, Francis X. & Inoue, Atsushi, 2001.
"Long memory and regime switching,"
Journal of Econometrics, Elsevier, vol. 105(1), pages 131-159, November.
- Francis X. Diebold & Atsushi Inoue, 2000. "Long Memory and Regime Switching," NBER Technical Working Papers 0264, National Bureau of Economic Research, Inc.
- John F. Garvey & Liam A. Gallagher, 2012. "The Realised–Implied Volatility Relationship: Recent Empirical Evidence from FTSE‐100 Stocks," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 31(7), pages 639-660, November.
- Beg, A.B.M. Rabiul Alam & Anwar, Sajid, 2012. "Sources of volatility persistence: A case study of the U.K. pound/U.S. dollar exchange rate returns," The North American Journal of Economics and Finance, Elsevier, vol. 23(2), pages 165-184.
- Becker, Ralf & Clements, Adam E. & White, Scott I., 2006. "On the informational efficiency of S&P500 implied volatility," The North American Journal of Economics and Finance, Elsevier, vol. 17(2), pages 139-153, August.
- Granger, C. W. J., 1981. "Some properties of time series data and their use in econometric model specification," Journal of Econometrics, Elsevier, vol. 16(1), pages 121-130, May.
- Bollerslev, Tim & Ole Mikkelsen, Hans, 1999. "Long-term equity anticipation securities and stock market volatility dynamics," Journal of Econometrics, Elsevier, vol. 92(1), pages 75-99, September.
- C. W. J. Granger & Roselyne Joyeux, 1980. "An Introduction To Long‐Memory Time Series Models And Fractional Differencing," Journal of Time Series Analysis, Wiley Blackwell, vol. 1(1), pages 15-29, January.
- Barkoulas, John T. & Baum, Christopher F., 1996.
"Long-term dependence in stock returns,"
Economics Letters, Elsevier, vol. 53(3), pages 253-259, December.
- Christopher F. Baum & John Barkoulas, 1996. "Long Term Dependence in Stock Returns," Boston College Working Papers in Economics 314., Boston College Department of Economics.
- R. F. Engle & A. J. Patton, 2001. "What good is a volatility model?," Quantitative Finance, Taylor & Francis Journals, vol. 1(2), pages 237-245.
- Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Liu, Qiang & Guo, Shuxin, 2014. "Variance-constrained canonical least-squares Monte Carlo: An accurate method for pricing American options," The North American Journal of Economics and Finance, Elsevier, vol. 28(C), pages 77-89.
- Chia-Lin Chang & Allen, David & McAleer, Michael, 2013.
"Recent developments in financial economics and econometrics: An overview,"
The North American Journal of Economics and Finance, Elsevier, vol. 26(C), pages 217-226.
- Chia-Lin Chang & David Allen & Michael McAleer, 2013. "Recent Developments in Financial Economics and Econometrics: An Overview," Tinbergen Institute Discussion Papers 13-021/III, Tinbergen Institute.
- Chia-Lin Chang & David Allen & Michael McAleer, 2013. "Recent Developments in Financial Economics and Econometrics: An Overview," Documentos de Trabajo del ICAE 2013-03, Universidad Complutense de Madrid, Facultad de Ciencias Económicas y Empresariales, Instituto Complutense de Análisis Económico.
- Chia-Lin Chang & David E Allen & Michael McAleer, 2013. "Recent Developments in Financial Economics and Econometrics:An Overview," KIER Working Papers 842, Kyoto University, Institute of Economic Research.
- Chang, C-L. & Allen, D.E. & McAleer, M.J., 2013. "Recent Developments in Financial Economics and Econometrics: An Overview," Econometric Institute Research Papers EI 2013-03, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
- Chia-Lin Chang & David Allen & Michael McAleer, 2013. "Recent Developments in Financial Economics and Econometrics: An Overview," Working Papers in Economics 13/06, University of Canterbury, Department of Economics and Finance.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Caporin, Massimiliano & Ranaldo, Angelo & Santucci de Magistris, Paolo, 2013.
"On the predictability of stock prices: A case for high and low prices,"
Journal of Banking & Finance, Elsevier, vol. 37(12), pages 5132-5146.
- Massimiliano Caporin & Angelo Ranaldo & Paolo Santucci de Magistris, 2011. "On the Predictability of Stock Prices: A Case for High and Low Prices," "Marco Fanno" Working Papers 0136, Dipartimento di Scienze Economiche "Marco Fanno".
- Massimiliano Caporin & Angelo Ranaldo, 2011. "On the Predictability of Stock Prices: a Case for High and Low Prices," Working Papers 2011-11, Swiss National Bank.
- Caporin, Massimiliano & Ranaldo, Angelo & Santucci de Magistris, Paolo, 2012. "On the Predictability of Stock Prices: a Case for High and Low Prices," Working Papers on Finance 1213, University of St. Gallen, School of Finance.
- Andersen, Torben G. & Bollerslev, Tim & Christoffersen, Peter F. & Diebold, Francis X., 2006. "Volatility and Correlation Forecasting," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 1, chapter 15, pages 777-878, Elsevier.
- Alia Afzal & Philipp Sibbertsen, 2021. "Modeling fractional cointegration between high and low stock prices in Asian countries," Empirical Economics, Springer, vol. 60(2), pages 661-682, February.
- Caporale, Guglielmo Maria & Gil-Alana, Luis A. & Poza, Carlos, 2020.
"High and low prices and the range in the European stock markets: A long-memory approach,"
Research in International Business and Finance, Elsevier, vol. 52(C).
- Guglielmo Maria Caporale & Luis A. Gil-Alana & Carlos Poza, 2019. "High and low prices and the range in the European stock markets: a long-memory approach," CESifo Working Paper Series 7652, CESifo.
- Lu, Yang K. & Perron, Pierre, 2010.
"Modeling and forecasting stock return volatility using a random level shift model,"
Journal of Empirical Finance, Elsevier, vol. 17(1), pages 138-156, January.
- Yang K. Lu & Pierre Perron, 2008. "Modeling and Forecasting Stock Return Volatility Using a Random Level Shift Model," Boston University - Department of Economics - Working Papers Series wp2008-012, Boston University - Department of Economics.
- Maheu John, 2005. "Can GARCH Models Capture Long-Range Dependence?," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 9(4), pages 1-43, December.
- Robert Ślepaczuk & Grzegorz Zakrzewski, 2009. "High-Frequency and Model-Free Volatility Estimators," Working Papers 2009-13, Faculty of Economic Sciences, University of Warsaw.
- Javier Haulde & Morten Ørregaard Nielsen, 2022.
"Fractional integration and cointegration,"
CREATES Research Papers
2022-02, Department of Economics and Business Economics, Aarhus University.
- Javier Hualde & Morten {O}rregaard Nielsen, 2022. "Fractional integration and cointegration," Papers 2211.10235, arXiv.org.
- Torben G. Andersen & Tim Bollerslev & Peter F. Christoffersen & Francis X. Diebold, 2005.
"Volatility Forecasting,"
PIER Working Paper Archive
05-011, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania.
- Andersen, Torben G. & Bollerslev, Tim & Christoffersen, Peter F. & Diebold, Francis X., 2005. "Volatility forecasting," CFS Working Paper Series 2005/08, Center for Financial Studies (CFS).
- Torben G. Andersen & Tim Bollerslev & Peter F. Christoffersen & Francis X. Diebold, 2005. "Volatility Forecasting," NBER Working Papers 11188, National Bureau of Economic Research, Inc.
- Henning Fischer & Ángela Blanco‐FERNÁndez & Peter Winker, 2016. "Predicting Stock Return Volatility: Can We Benefit from Regression Models for Return Intervals?," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 35(2), pages 113-146, March.
- Isao Ishida & Toshiaki Watanabe, 2009.
"Modeling and Forecasting the Volatility of the Nikkei 225 Realized Volatility Using the ARFIMA-GARCH Model,"
CARF F-Series
CARF-F-145, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo.
- Isao Ishida & Toshiaki Watanabe, 2009. "Modeling and Forecasting the Volatility of the Nikkei 225 Realized Volatility Using the ARFIMA-GARCH Model," CIRJE F-Series CIRJE-F-608, CIRJE, Faculty of Economics, University of Tokyo.
- Isao Ishida & Toshiaki Watanabe, 2009. "Modeling and Forecasting the Volatility of the Nikkei 225 Realized Volatility Using the ARFIMA-GARCH Model," Global COE Hi-Stat Discussion Paper Series gd08-032, Institute of Economic Research, Hitotsubashi University.
- Robert Ślepaczuk & Grzegorz Zakrzewski, 2009. "Emerging versus developed volatility indices. The comparison of VIW20 and VIX indices," Working Papers 2009-11, Faculty of Economic Sciences, University of Warsaw.
- Abderrazak Ben Maatoug & Rim Lamouchi & Russell Davidson & Ibrahim Fatnassi, 2018.
"Modelling Foreign Exchange Realized Volatility Using High Frequency Data: Long Memory versus Structural Breaks,"
Central European Journal of Economic Modelling and Econometrics, Central European Journal of Economic Modelling and Econometrics, vol. 10(1), pages 1-25, March.
- Abderrazak Ben Maatoug & Rim Lamouchi & Russell Davidson & Ibrahim Fatnassi, 2018. "Modelling Foreign Exchange Realized Volatility Using High Frequency Data: Long Memory versus Structural Breaks," Post-Print hal-01982032, HAL.
- Bent Jesper Christensen & Morten Ørregaard Nielsen, 2007.
"The Effect of Long Memory in Volatility on Stock Market Fluctuations,"
The Review of Economics and Statistics, MIT Press, vol. 89(4), pages 684-700, November.
- Bent Jesper Christensen & Morten Ørregaard Nielsen, 2007. "The Effect of Long Memory in Volatility on Stock Market Fluctuations," CREATES Research Papers 2007-03, Department of Economics and Business Economics, Aarhus University.
- Scharth, Marcel & Medeiros, Marcelo C., 2009.
"Asymmetric effects and long memory in the volatility of Dow Jones stocks,"
International Journal of Forecasting, Elsevier, vol. 25(2), pages 304-327.
- Marcel Scharth & Marcelo Cunha Medeiros, 2006. "Asymmetric effects and long memory in the volatility of Dow Jones stocks," Textos para discussão 532, Department of Economics PUC-Rio (Brazil).
- Lyócsa, Štefan & Molnár, Peter & Výrost, Tomáš, 2021. "Stock market volatility forecasting: Do we need high-frequency data?," International Journal of Forecasting, Elsevier, vol. 37(3), pages 1092-1110.
- Torben G. Andersen & Tim Bollerslev & Francis X. Diebold & Paul Labys, 1999.
"The Distribution of Exchange Rate Volatility,"
New York University, Leonard N. Stern School Finance Department Working Paper Seires
99-059, New York University, Leonard N. Stern School of Business-.
- Torben G. Andersen & Tim Bollerslev & Francis X. Diebold & Paul Labys, 1999. "The Distribution of Exchange Rate Volatility," Center for Financial Institutions Working Papers 99-08, Wharton School Center for Financial Institutions, University of Pennsylvania.
- Torben Andersen & Tim Bollerslev & Francis X. Diebold & Paul Labys, 1999. "The Distribution of Exchange Rate Volatility," NBER Working Papers 6961, National Bureau of Economic Research, Inc.
- Jensen Mark J., 2016.
"Robust estimation of nonstationary, fractionally integrated, autoregressive, stochastic volatility,"
Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 20(4), pages 455-475, September.
- Mark J. Jensen, 2015. "Robust estimation of nonstationary, fractionally integrated, autoregressive, stochastic volatility," FRB Atlanta Working Paper 2015-12, Federal Reserve Bank of Atlanta.
- Baruník, Jozef & Dvořáková, Sylvie, 2015. "An empirical model of fractionally cointegrated daily high and low stock market prices," Economic Modelling, Elsevier, vol. 45(C), pages 193-206.
- Tomasz Wójtowicz & Henryk Gurgul, 2009. "Long memory of volatility measures in time series," Operations Research and Decisions, Wroclaw University of Science and Technology, Faculty of Management, vol. 19(1), pages 37-54.
More about this item
Keywords
Economics of information; Model free volatility; High frequency data; Long memory effects;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecofin:v:26:y:2013:i:c:p:370-379. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/620163 .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.