IDEAS home Printed from https://ideas.repec.org/a/eee/ecmode/v35y2013icp576-581.html
   My bibliography  Save this article

Modeling the volatility of futures return in rubber and oil—A Copula-based GARCH model approach

Author

Listed:
  • Li, Meng
  • Yang, Liang

Abstract

This paper attempts to make use of a Copula-based GARCH (Generalized AutoRegressive Conditional Heteroskedasticity) Model to find out the relationships between the volatility of rubber futures returns in the Agricultural Futures Exchange of Thailand (AFET) and other four main markets, namely, the volatility of rubber futures returns in the Singapore Commodity Exchange (SICOM), the volatility of rubber futures returns, crude oil returns, and gas oil returns in the Tokyo Commodity Exchange (TOCOM). The results illustrate that the Student-t dependence only shows better explanatory power than the Gaussian dependence structure and the persistence pertaining to the dependence structure between rubber futures returns in AFET and oil futures returns, namely, crude oil futures returns and gas oil futures returns in TOCOM. Whereas, the Gaussian dependence shows better explanatory ability between rubber futures returns in AFET and other rubber futures returns, namely, the volatility of rubber futures in SICOM and TOCOM. For the multivariate Copula model, all the parameters between AFET and other variables are significant. Based on these results, with the liberalization of agricultural trade and the withdrawal of government support to agricultural producers, there is in many countries a new need for price discovery and even physical trading mechanisms, a need that can often be met by commodity futures exchanges. Hence, this paper recommends that the government supports the hedge mutual funds that can be invested in every commodities futures exchange in the world. It can also put the funds together that will contribute farmers to invest in each commodities futures market.

Suggested Citation

  • Li, Meng & Yang, Liang, 2013. "Modeling the volatility of futures return in rubber and oil—A Copula-based GARCH model approach," Economic Modelling, Elsevier, vol. 35(C), pages 576-581.
  • Handle: RePEc:eee:ecmode:v:35:y:2013:i:c:p:576-581
    DOI: 10.1016/j.econmod.2013.07.016
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0264999313002812
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Masih, Rumi & Masih, Abul M. M., 2001. "Long and short term dynamic causal transmission amongst international stock markets," Journal of International Money and Finance, Elsevier, vol. 20(4), pages 563-587, August.
    2. Thierry Roncalli & Gael Riboulet & Ashkan Nikeghbali & Vado Durrleman & Erick Bouy?, 2001. "Copulas: an Open Field for Risk Management," Working Papers wp01-01, Warwick Business School, Finance Group.
    3. Aas, Kjersti & Czado, Claudia & Frigessi, Arnoldo & Bakken, Henrik, 2009. "Pair-copula constructions of multiple dependence," Insurance: Mathematics and Economics, Elsevier, vol. 44(2), pages 182-198, April.
    4. Hansen, Bruce E, 1994. "Autoregressive Conditional Density Estimation," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 35(3), pages 705-730, August.
    5. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    6. Panayiotis Theodossiou & Unro Lee, 1993. "Mean And Volatility Spillovers Across Major National Stock Markets: Further Empirical Evidence," Journal of Financial Research, Southern Finance Association;Southwestern Finance Association, vol. 16(4), pages 337-350, December.
    7. Li, Meng & Yang, Liang, 2012. "Rigid wage-setting and the effect of a supply shock, fiscal and monetary policies on Chinese economy by a CGE analysis," Economic Modelling, Elsevier, vol. 29(5), pages 1858-1869.
    8. Andrew J. Patton, 2006. "Modelling Asymmetric Exchange Rate Dependence," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 47(2), pages 527-556, May.
    9. Kearney, Colm, 2000. "The determination and international transmission of stock market volatility," Global Finance Journal, Elsevier, vol. 11(1-2), pages 31-52.
    10. Eun, Cheol S. & Shim, Sangdal, 1989. "International Transmission of Stock Market Movements," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 24(02), pages 241-256, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Stanisław Wanat & Sławomir Śmiech & Monika Papież, 2016. "In Search Of Hedges And Safe Havens In Global Financial Markets," Statistics in Transition New Series, Polish Statistical Association, vol. 17(3), pages 557-574, September.
    2. Arthur Charpentier, 2015. "Prévision avec des copules en finance," Working Papers hal-01151233, HAL.
    3. Wanat, Stanisław & Papież, Monika & Śmiech, Sławomir, 2014. "The conditional dependence structure between precious metals: a copula-GARCH approach," MPRA Paper 56664, University Library of Munich, Germany.
    4. Kentaro Iwatsubo & Clinton Watkins, 2018. "Who Influences the Fundamental Value of Commodity Futures in Japan?," Discussion Papers 1830, Graduate School of Economics, Kobe University.
    5. repec:eee:ecmode:v:64:y:2017:i:c:p:409-418 is not listed on IDEAS

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecmode:v:35:y:2013:i:c:p:576-581. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/locate/inca/30411 .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.