IDEAS home Printed from
   My bibliography  Save this article

A fractal version of the Hull–White interest rate model


  • Hainaut, Donatien


This paper develops a new version of the Hull–White's model of interest rates, in which the volatility of the short term rate is driven by a Markov switching multifractal model. The interest rate dynamics is still mean reverting but the constant volatility of the Brownian motion is replaced by a multifractal process so as to capture persistent volatility shocks. In this setting, we infer properties of the short term rate distribution, a semi-closed form expression for bond prices and their dynamics under a forward measure. Finally, our work is illustrated by a numerical application in which we assess the exposure of a bonds portfolio to the interest risk.

Suggested Citation

  • Hainaut, Donatien, 2013. "A fractal version of the Hull–White interest rate model," Economic Modelling, Elsevier, vol. 31(C), pages 323-334.
  • Handle: RePEc:eee:ecmode:v:31:y:2013:i:c:p:323-334 DOI: 10.1016/j.econmod.2012.11.041

    Download full text from publisher

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Camilla LandÊn, 2000. "Bond pricing in a hidden Markov model of the short rate," Finance and Stochastics, Springer, vol. 4(4), pages 371-389.
    2. Laurent Calvet & Adlai Fisher, 2002. "Multifractality In Asset Returns: Theory And Evidence," The Review of Economics and Statistics, MIT Press, vol. 84(3), pages 381-406, August.
    3. Asbjørn T. Hansen & Rolf Poulsen, 2000. "A simple regime switching term structure model," Finance and Stochastics, Springer, vol. 4(4), pages 409-429.
    4. Calvet, Laurent & Fisher, Adlai, 2001. "Forecasting multifractal volatility," Journal of Econometrics, Elsevier, vol. 105(1), pages 27-58, November.
    5. Smith, Daniel R, 2002. "Markov-Switching and Stochastic Volatility Diffusion Models of Short-Term Interest Rates," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(2), pages 183-197, April.
    6. Kalimipalli, Madhu & Susmel, Raul, 2004. "Regime-switching stochastic volatility and short-term interest rates," Journal of Empirical Finance, Elsevier, vol. 11(3), pages 309-329, June.
    7. Hamilton, James D, 1989. "A New Approach to the Economic Analysis of Nonstationary Time Series and the Business Cycle," Econometrica, Econometric Society, vol. 57(2), pages 357-384, March.
    8. Robert Elliott & Tak Kuen Siu, 2009. "On Markov-modulated Exponential-affine Bond Price Formulae," Applied Mathematical Finance, Taylor & Francis Journals, vol. 16(1), pages 1-15.
    9. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    10. Robert J. Elliott & Tak Kuen Siu & Alex Badescu, 2011. "Bond valuation under a discrete-time regime-switching term-structure model and its continuous-time extension," Managerial Finance, Emerald Group Publishing, vol. 37(11), pages 1025-1047, September.
    11. Vasicek, Oldrich, 1977. "An equilibrium characterization of the term structure," Journal of Financial Economics, Elsevier, vol. 5(2), pages 177-188, November.
    12. Laurent E. Calvet, 2004. "How to Forecast Long-Run Volatility: Regime Switching and the Estimation of Multifractal Processes," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 2(1), pages 49-83.
    13. Vasicek, Oldrich Alfonso, 1977. "Abstract: An Equilibrium Characterization of the Term Structure," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 12(04), pages 627-627, November.
    14. Hull, John & White, Alan, 1990. "Pricing Interest-Rate-Derivative Securities," Review of Financial Studies, Society for Financial Studies, vol. 3(4), pages 573-592.
    15. Mills, Terence C. & Wang, Ping, 2006. "Modelling regime shift behaviour in Asian real interest rates," Economic Modelling, Elsevier, vol. 23(6), pages 952-966, December.
    16. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Hainaut, Donatien, 2016. "A bivariate Hawkes process for interest rate modeling," Economic Modelling, Elsevier, vol. 57(C), pages 180-196.


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecmode:v:31:y:2013:i:c:p:323-334. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.