IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v74y2014icp217-227.html

Sample size calculation for the proportional hazards model with a time-dependent covariate

Author

Listed:
  • Wang, Songfeng
  • Zhang, Jiajia
  • Lu, Wenbin

Abstract

The Cox proportional hazards (PH) model with time-dependent covariates (referred to as the extended PH model) has been widely used in medical and health related studies to investigate the effects of time-varying risk factors on survival. Theories and practices regarding model estimation and fitting have been well developed for the extended PH model. However, little has been done regarding sample size calculations in survival studies involving a time-varying risk factor. A novel sample size formula based on the extended PH model is proposed by investigating the asymptotic distributions of the weighted log-rank statistics under the null and local alternative hypotheses. The derived sample size formula is an extension of the sample size formula for the standard Cox PH model. The performance of the proposed formula is evaluated by extensive simulations, and examples based on real data are given to illustrate the applications of the proposed methods.

Suggested Citation

  • Wang, Songfeng & Zhang, Jiajia & Lu, Wenbin, 2014. "Sample size calculation for the proportional hazards model with a time-dependent covariate," Computational Statistics & Data Analysis, Elsevier, vol. 74(C), pages 217-227.
  • Handle: RePEc:eee:csdana:v:74:y:2014:i:c:p:217-227
    DOI: 10.1016/j.csda.2014.01.018
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947314000292
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2014.01.018?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Peter Diggle & Daniel Farewell & Robin Henderson, 2007. "Analysis of longitudinal data with drop‐out: objectives, assumptions and a proposal," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 56(5), pages 499-550, November.
    2. Rizopoulos, Dimitris, 2010. "JM: An R Package for the Joint Modelling of Longitudinal and Time-to-Event Data," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 35(i09).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Qizhen & Zhu, Yingming & Wang, Yudong, 2017. "The effects of oil shocks on export duration of China," Energy, Elsevier, vol. 125(C), pages 55-61.
    2. Jaehak Yu & Sejin Park & Hansung Lee & Cheol-Sig Pyo & Yang Sun Lee, 2020. "An Elderly Health Monitoring System Using Machine Learning and In-Depth Analysis Techniques on the NIH Stroke Scale," Mathematics, MDPI, vol. 8(7), pages 1-16, July.
    3. Emil Scosyrev & Fabrice Bancken, 2017. "Expected Precision of Estimation and Probability of Ruling Out a Hypothesis Based on a Confidence Interval," International Statistical Review, International Statistical Institute, vol. 85(3), pages 455-472, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Walter Dempsey & Peter McCullagh, 2018. "Survival models and health sequences," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 24(4), pages 550-584, October.
    2. Hongyuan Cao & Mathew M. Churpek & Donglin Zeng & Jason P. Fine, 2015. "Analysis of the Proportional Hazards Model With Sparse Longitudinal Covariates," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(511), pages 1187-1196, September.
    3. Graeme L. Hickey & Pete Philipson & Andrea Jorgensen & Ruwanthi Kolamunnage‐Dona, 2018. "A comparison of joint models for longitudinal and competing risks data, with application to an epilepsy drug randomized controlled trial," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 181(4), pages 1105-1123, October.
    4. Rizopoulos, Dimitris, 2012. "Fast fitting of joint models for longitudinal and event time data using a pseudo-adaptive Gaussian quadrature rule," Computational Statistics & Data Analysis, Elsevier, vol. 56(3), pages 491-501.
    5. Medina-Olivares, Victor & Calabrese, Raffaella & Crook, Jonathan & Lindgren, Finn, 2023. "Joint models for longitudinal and discrete survival data in credit scoring," European Journal of Operational Research, Elsevier, vol. 307(3), pages 1457-1473.
    6. Colin Griesbach & Andreas Groll & Elisabeth Bergherr, 2021. "Addressing cluster-constant covariates in mixed effects models via likelihood-based boosting techniques," PLOS ONE, Public Library of Science, vol. 16(7), pages 1-17, July.
    7. Hanze Zhang & Yangxin Huang, 2020. "Quantile regression-based Bayesian joint modeling analysis of longitudinal–survival data, with application to an AIDS cohort study," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 26(2), pages 339-368, April.
    8. Mélanie Prague & Daniel Commenges & Jon Michael Gran & Bruno Ledergerber & Jim Young & Hansjakob Furrer & Rodolphe Thiébaut, 2017. "Dynamic models for estimating the effect of HAART on CD4 in observational studies: Application to the Aquitaine Cohort and the Swiss HIV Cohort Study," Biometrics, The International Biometric Society, vol. 73(1), pages 294-304, March.
    9. Zhang, Zili & Charalambous, Christiana & Foster, Peter, 2023. "A Gaussian copula joint model for longitudinal and time-to-event data with random effects," Computational Statistics & Data Analysis, Elsevier, vol. 181(C).
    10. Oi, Katsuya, 2020. "Disuse as time away from a cognitively demanding job; how does it temporally or developmentally impact late-life cognition?," Intelligence, Elsevier, vol. 82(C).
    11. Dimitris Rizopoulos, 2011. "Dynamic Predictions and Prospective Accuracy in Joint Models for Longitudinal and Time-to-Event Data," Biometrics, The International Biometric Society, vol. 67(3), pages 819-829, September.
    12. Karl, Andrew T. & Yang, Yan & Lohr, Sharon L., 2014. "Computation of maximum likelihood estimates for multiresponse generalized linear mixed models with non-nested, correlated random effects," Computational Statistics & Data Analysis, Elsevier, vol. 73(C), pages 146-162.
    13. Hannes Kröger & Johan Fritzell & Rasmus Hoffmann, 2016. "The Association of Levels of and Decline in Grip Strength in Old Age with Trajectories of Life Course Occupational Position," PLOS ONE, Public Library of Science, vol. 11(5), pages 1-16, May.
    14. Yih‐Huei Huang & Wen‐Han Hwang & Fei‐Yin Chen, 2016. "Improving efficiency using the Rao–Blackwell theorem in corrected and conditional score estimation methods for joint models," Biometrics, The International Biometric Society, vol. 72(4), pages 1136-1144, December.
    15. Solène Desmée & France Mentré & Christine Veyrat-Follet & Bernard Sébastien & Jérémie Guedj, 2017. "Using the SAEM algorithm for mechanistic joint models characterizing the relationship between nonlinear PSA kinetics and survival in prostate cancer patients," Biometrics, The International Biometric Society, vol. 73(1), pages 305-312, March.
    16. Marlena Maziarz & Patrick Heagerty & Tianxi Cai & Yingye Zheng, 2017. "On longitudinal prediction with time-to-event outcome: Comparison of modeling options," Biometrics, The International Biometric Society, vol. 73(1), pages 83-93, March.
    17. Daniel Commenges, 2019. "Dealing with death when studying disease or physiological marker: the stochastic system approach to causality," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 25(3), pages 381-405, July.
    18. Wang, Shikun & Li, Zhao & Lan, Lan & Zhao, Jieyi & Zheng, W. Jim & Li, Liang, 2022. "GPU accelerated estimation of a shared random effect joint model for dynamic prediction," Computational Statistics & Data Analysis, Elsevier, vol. 174(C).
    19. Edward F. Vonesh & Tom Greene, 2022. "Biased estimation with shared parameter models in the presence of competing dropout mechanisms," Biometrics, The International Biometric Society, vol. 78(1), pages 399-406, March.
    20. Cuihong Zhang & Jing Ning & Steven H. Belle & Robert H. Squires & Jianwen Cai & Ruosha Li, 2022. "Assessing predictive discrimination performance of biomarkers in the presence of treatment‐induced dependent censoring," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 71(5), pages 1137-1157, November.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:74:y:2014:i:c:p:217-227. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.