IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0254178.html
   My bibliography  Save this article

Addressing cluster-constant covariates in mixed effects models via likelihood-based boosting techniques

Author

Listed:
  • Colin Griesbach
  • Andreas Groll
  • Elisabeth Bergherr

Abstract

Boosting techniques from the field of statistical learning have grown to be a popular tool for estimating and selecting predictor effects in various regression models and can roughly be separated in two general approaches, namely gradient boosting and likelihood-based boosting. An extensive framework has been proposed in order to fit generalized mixed models based on boosting, however for the case of cluster-constant covariates likelihood-based boosting approaches tend to mischoose variables in the selection step leading to wrong estimates. We propose an improved boosting algorithm for linear mixed models, where the random effects are properly weighted, disentangled from the fixed effects updating scheme and corrected for correlations with cluster-constant covariates in order to improve quality of estimates and in addition reduce the computational effort. The method outperforms current state-of-the-art approaches from boosting and maximum likelihood inference which is shown via simulations and various data examples.

Suggested Citation

  • Colin Griesbach & Andreas Groll & Elisabeth Bergherr, 2021. "Addressing cluster-constant covariates in mixed effects models via likelihood-based boosting techniques," PLOS ONE, Public Library of Science, vol. 16(7), pages 1-17, July.
  • Handle: RePEc:plo:pone00:0254178
    DOI: 10.1371/journal.pone.0254178
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0254178
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0254178&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0254178?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Florin Vaida & Suzette Blanchard, 2005. "Conditional Akaike information for mixed-effects models," Biometrika, Biometrika Trust, vol. 92(2), pages 351-370, June.
    2. Rizopoulos, Dimitris, 2010. "JM: An R Package for the Joint Modelling of Longitudinal and Time-to-Event Data," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 35(i09).
    3. Bates, Douglas & Mächler, Martin & Bolker, Ben & Walker, Steve, 2015. "Fitting Linear Mixed-Effects Models Using lme4," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 67(i01).
    4. Friedman, Jerome H. & Hastie, Trevor & Tibshirani, Rob, 2010. "Regularization Paths for Generalized Linear Models via Coordinate Descent," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 33(i01).
    5. Ciprian M. Crainiceanu & David Ruppert, 2004. "Likelihood ratio tests in linear mixed models with one variance component," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 66(1), pages 165-185, February.
    6. Gerhard Tutz & Harald Binder, 2006. "Generalized Additive Modeling with Implicit Variable Selection by Likelihood-Based Boosting," Biometrics, The International Biometric Society, vol. 62(4), pages 961-971, December.
    7. Sonja Greven & Thomas Kneib, 2010. "On the behaviour of marginal and conditional AIC in linear mixed models," Biometrika, Biometrika Trust, vol. 97(4), pages 773-789.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Braun, Julia & Sabanés Bové, Daniel & Held, Leonhard, 2014. "Choice of generalized linear mixed models using predictive crossvalidation," Computational Statistics & Data Analysis, Elsevier, vol. 75(C), pages 190-202.
    2. Kruse, René-Marcel & Silbersdorff, Alexander & Säfken, Benjamin, 2022. "Model averaging for linear mixed models via augmented Lagrangian," Computational Statistics & Data Analysis, Elsevier, vol. 167(C).
    3. Craiu, Radu V. & Duchesne, Thierry, 2018. "A scalable and efficient covariate selection criterion for mixed effects regression models with unknown random effects structure," Computational Statistics & Data Analysis, Elsevier, vol. 117(C), pages 154-161.
    4. Cantoni, Eva & Jacot, Nadège & Ghisletta, Paolo, 2024. "Review and comparison of measures of explained variation and model selection in linear mixed-effects models," Econometrics and Statistics, Elsevier, vol. 29(C), pages 150-168.
    5. Philipp F. M. Baumann & Enzo Rossi & Alexander Volkmann, 2020. "What Drives Inflation and How: Evidence from Additive Mixed Models Selected by cAIC," Papers 2006.06274, arXiv.org, revised Aug 2022.
    6. Øystein Sørensen & Anders M. Fjell & Kristine B. Walhovd, 2023. "Longitudinal Modeling of Age-Dependent Latent Traits with Generalized Additive Latent and Mixed Models," Psychometrika, Springer;The Psychometric Society, vol. 88(2), pages 456-486, June.
    7. Tutz, Gerhard & Pößnecker, Wolfgang & Uhlmann, Lorenz, 2015. "Variable selection in general multinomial logit models," Computational Statistics & Data Analysis, Elsevier, vol. 82(C), pages 207-222.
    8. Simona Buscemi & Antonella Plaia, 2020. "Model selection in linear mixed-effect models," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 104(4), pages 529-575, December.
    9. Jian Lu & Raheel Ahmad & Thomas Nguyen & Jeffrey Cifello & Humza Hemani & Jiangyuan Li & Jinguo Chen & Siyi Li & Jing Wang & Achouak Achour & Joseph Chen & Meagan Colie & Ana Lustig & Christopher Dunn, 2022. "Heterogeneity and transcriptome changes of human CD8+ T cells across nine decades of life," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    10. Kawakubo, Yuki & Kubokawa, Tatsuya, 2014. "Modified conditional AIC in linear mixed models," Journal of Multivariate Analysis, Elsevier, vol. 129(C), pages 44-56.
    11. Faisal Zahid & Gerhard Tutz, 2013. "Multinomial logit models with implicit variable selection," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 7(4), pages 393-416, December.
    12. Gerhard Tutz & Gunther Schauberger, 2015. "A Penalty Approach to Differential Item Functioning in Rasch Models," Psychometrika, Springer;The Psychometric Society, vol. 80(1), pages 21-43, March.
    13. Marc Jan Bonder & Stephen J. Clark & Felix Krueger & Siyuan Luo & João Agostinho de Sousa & Aida M. Hashtroud & Thomas M. Stubbs & Anne-Katrien Stark & Steffen Rulands & Oliver Stegle & Wolf Reik & Fe, 2024. "scEpiAge: an age predictor highlighting single-cell ageing heterogeneity in mouse blood," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    14. Sun-Joo Cho & Sarah Brown-Schmidt & Paul De Boeck & Matthew Naveiras & Si On Yoon & Aaron Benjamin, 2023. "Incorporating Functional Response Time Effects into a Signal Detection Theory Model," Psychometrika, Springer;The Psychometric Society, vol. 88(3), pages 1056-1086, September.
    15. Yu, Dalei & Yau, Kelvin K.W., 2012. "Conditional Akaike information criterion for generalized linear mixed models," Computational Statistics & Data Analysis, Elsevier, vol. 56(3), pages 629-644.
    16. Overholser, Rosanna & Xu, Ronghui, 2014. "Effective degrees of freedom and its application to conditional AIC for linear mixed-effects models with correlated error structures," Journal of Multivariate Analysis, Elsevier, vol. 132(C), pages 160-170.
    17. Barbara Emmenegger & Julien Massoni & Christine M. Pestalozzi & Miriam Bortfeld-Miller & Benjamin A. Maier & Julia A. Vorholt, 2023. "Identifying microbiota community patterns important for plant protection using synthetic communities and machine learning," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    18. Colin Griesbach & Andreas Mayr & Elisabeth Bergherr, 2023. "Variable Selection and Allocation in Joint Models via Gradient Boosting Techniques," Mathematics, MDPI, vol. 11(2), pages 1-16, January.
    19. Lauren P. Grant & Chris Gennings & Edmond P. Wickham & Derek Chapman & Shumei Sun & David C. Wheeler, 2018. "Modeling Pediatric Body Mass Index and Neighborhood Environment at Different Spatial Scales," IJERPH, MDPI, vol. 15(3), pages 1-19, March.
    20. Lore Zumeta-Olaskoaga & Maximilian Weigert & Jon Larruskain & Eder Bikandi & Igor Setuain & Josean Lekue & Helmut Küchenhoff & Dae-Jin Lee, 2023. "Prediction of sports injuries in football: a recurrent time-to-event approach using regularized Cox models," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 107(1), pages 101-126, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0254178. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.