IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v56y2012i8p2583-2597.html
   My bibliography  Save this article

Adaptive LASSO for general transformation models with right censored data

Author

Listed:
  • Li, Jianbo
  • Gu, Minggao

Abstract

In this paper, we consider variable selection for general transformation models with right censored data and propose a unified procedure for both variable selection and estimation. We conduct the proposed procedure by maximizing penalized log-marginal likelihood function with Adaptive LASSO penalty (ALASSO) on regression coefficients. Two main advantages of this procedure are as follows: (i) the penalties can be assigned to regression coefficients adaptively by data according to the importance of corresponding covariates; (ii) it is free of baseline survival function and censoring distribution. Under some regular conditions, we show that the penalized estimates with ALASSO are n-consistent and enjoy oracle properties. Some simulation examples and Primary Biliary Cirrhosis Data application illustrate that our proposed procedure works very well for moderate sample size.

Suggested Citation

  • Li, Jianbo & Gu, Minggao, 2012. "Adaptive LASSO for general transformation models with right censored data," Computational Statistics & Data Analysis, Elsevier, vol. 56(8), pages 2583-2597.
  • Handle: RePEc:eee:csdana:v:56:y:2012:i:8:p:2583-2597
    DOI: 10.1016/j.csda.2012.02.023
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947312001053
    Download Restriction: Full text for ScienceDirect subscribers only.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zou, Hui, 2006. "The Adaptive Lasso and Its Oracle Properties," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 1418-1429, December.
    2. Zhang, Hao Helen & Lu, Wenbin & Wang, Hansheng, 2010. "On sparse estimation for semiparametric linear transformation models," Journal of Multivariate Analysis, Elsevier, vol. 101(7), pages 1594-1606, August.
    3. Anestis Antoniadis & Piotr Fryzlewicz & Frédérique Letué, 2010. "The Dantzig Selector in Cox's Proportional Hazards Model," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 37(4), pages 531-552.
    4. Hao Helen Zhang & Wenbin Lu, 2007. "Adaptive Lasso for Cox's proportional hazards model," Biometrika, Biometrika Trust, vol. 94(3), pages 691-703.
    5. Wang, Hansheng & Leng, Chenlei, 2007. "Unified LASSO Estimation by Least Squares Approximation," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 1039-1048, September.
    6. Antoniadis, Anestis & Fryzlewicz, Piotr & Letué, Frédérique, 2010. "The Dantzig selector in Cox's proportional hazards model," LSE Research Online Documents on Economics 30992, London School of Economics and Political Science, LSE Library.
    7. Fan J. & Li R., 2001. "Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 1348-1360, December.
    8. Hansheng Wang & Runze Li & Chih-Ling Tsai, 2007. "Tuning parameter selectors for the smoothly clipped absolute deviation method," Biometrika, Biometrika Trust, vol. 94(3), pages 553-568.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Jianbo & Gu, Minggao & Zhang, Riquan, 2013. "Variable selection for general transformation models with right censored data via nonconcave penalties," Journal of Multivariate Analysis, Elsevier, vol. 115(C), pages 445-456.
    2. Chen, Xiaolin & Wang, Qihua, 2013. "Variable selection in the additive rate model for recurrent event data," Computational Statistics & Data Analysis, Elsevier, vol. 57(1), pages 491-503.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:56:y:2012:i:8:p:2583-2597. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/locate/csda .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.