IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v56y2012i1p114-125.html
   My bibliography  Save this article

Comparison of methods for identifying phenotype subgroups using categorical features data with application to autism spectrum disorder

Author

Listed:
  • Gebregziabher, Mulugeta
  • Shotwell, Matthew S.
  • Charles, Jane M.
  • Nicholas, Joyce S.

Abstract

We evaluate the performance of the Dirichlet process mixture (DPM) and the latent class model (LCM) in identifying autism phenotype subgroups based on categorical autism spectrum disorder (ASD) diagnostic features from the Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition Text Revision. A simulation study is designed to mimic the diagnostic features in the ASD dataset in order to evaluate the LCM and DPM methods in this context. Likelihood based information criteria and DPM partitioning are used to identify the best fitting models. The Rand statistic is used to compare the performance of the methods in recovering simulated phenotype subgroups. Our results indicate excellent recovery of the simulated subgroup structure for both methods. The LCM performs slightly better than DPM when the correct number of latent subgroups is selected a priori. The DPM method utilizes a maximum a posteriori (MAP) criterion to estimate the number of classes, and yielded results in fair agreement with the LCM method. Comparison of model fit indices in identifying the best fitting LCM showed that adjusted Bayesian information criteria (ABIC) picks the correct number of classes over 90% of the time. Thus, when diagnostic features are categorical and there is some prior information regarding the number of latent classes, LCM in conjunction with ABIC is preferred.

Suggested Citation

  • Gebregziabher, Mulugeta & Shotwell, Matthew S. & Charles, Jane M. & Nicholas, Joyce S., 2012. "Comparison of methods for identifying phenotype subgroups using categorical features data with application to autism spectrum disorder," Computational Statistics & Data Analysis, Elsevier, vol. 56(1), pages 114-125, January.
  • Handle: RePEc:eee:csdana:v:56:y:2012:i:1:p:114-125
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947311002179
    Download Restriction: Full text for ScienceDirect subscribers only.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Venkatram Ramaswamy & Wayne S. Desarbo & David J. Reibstein & William T. Robinson, 1993. "An Empirical Pooling Approach for Estimating Marketing Mix Elasticities with PIMS Data," Marketing Science, INFORMS, vol. 12(1), pages 103-124.
    2. Hamparsum Bozdogan, 1987. "Model selection and Akaike's Information Criterion (AIC): The general theory and its analytical extensions," Psychometrika, Springer;The Psychometric Society, vol. 52(3), pages 345-370, September.
    3. Lawrence Hubert & Phipps Arabie, 1985. "Comparing partitions," Journal of Classification, Springer;The Classification Society, vol. 2(1), pages 193-218, December.
    4. Stanley Sclove, 1987. "Application of model-selection criteria to some problems in multivariate analysis," Psychometrika, Springer;The Psychometric Society, vol. 52(3), pages 333-343, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tian, Amy Wei & Meyer, John P. & Ilic-Balas, Tatjana & Espinoza, Jose A. & Pepper, Susan, 2023. "In search of the pseudo-transformational leader: A person-centered approach," Journal of Business Research, Elsevier, vol. 158(C).
    2. Morgan, Grant B. & Hodge, Kari J. & Baggett, Aaron R., 2016. "Latent profile analysis with nonnormal mixtures: A Monte Carlo examination of model selection using fit indices," Computational Statistics & Data Analysis, Elsevier, vol. 93(C), pages 146-161.
    3. Ioana Gutu & Daniela Tatiana Agheorghiesei & Alexandru Tugui, 2023. "Assessment of a Workforce Sustainability Tool through Leadership and Digitalization," IJERPH, MDPI, vol. 20(2), pages 1-30, January.
    4. Aline Riboli Marasca & Maurício Scopel Hoffmann & Anelise Reis Gaya & Denise Ruschel Bandeira, 2021. "Subjective Well-Being and Psychopathology Symptoms: Mental Health Profiles and their Relations with Academic Achievement in Brazilian Children," Child Indicators Research, Springer;The International Society of Child Indicators (ISCI), vol. 14(3), pages 1121-1137, June.
    5. Schreier, Alayna & Stenersen, Madeline R. & Strambler, Michael J. & Marshall, Tim & Bracey, Jeana & Kaufman, Joy S., 2023. "Needs of caregivers of youth enrolled in a statewide system of care: A latent class analysis," Children and Youth Services Review, Elsevier, vol. 147(C).
    6. Francesco BARTOLUCCI & Silvia BACCI & Claudia PIGINI, 2015. "A Misspecification Test for Finite-Mixture Logistic Models for Clustered Binary and Ordered Responses," Working Papers 410, Universita' Politecnica delle Marche (I), Dipartimento di Scienze Economiche e Sociali.
    7. Wenjie Duan & Bo Qi & Junrong Sheng & Yuhang Wang, 2020. "Latent Character Strength Profile and Grouping Effects," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 147(1), pages 345-359, January.
    8. Isabelle Archambault & Véronique Dupéré, 2017. "Joint trajectories of behavioral, affective, and cognitive engagement in elementary school," The Journal of Educational Research, Taylor & Francis Journals, vol. 110(2), pages 188-198, March.
    9. Sakyajit Bhattacharya & Paul McNicholas, 2014. "A LASSO-penalized BIC for mixture model selection," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 8(1), pages 45-61, March.
    10. Marko Sarstedt & Christian M Ringle & Jun-Hwa Cheah & Hiram Ting & Ovidiu I Moisescu & Lacramioara Radomir, 2020. "Structural model robustness checks in PLS-SEM," Tourism Economics, , vol. 26(4), pages 531-554, June.
    11. dos Santos, Fabio Luis Marques & Duboz, Amandine & Grosso, Monica & Raposo, María Alonso & Krause, Jette & Mourtzouchou, Andromachi & Balahur, Alexandra & Ciuffo, Biagio, 2022. "An acceptance divergence? Media, citizens and policy perspectives on autonomous cars in the European Union," Transportation Research Part A: Policy and Practice, Elsevier, vol. 158(C), pages 224-238.
    12. Nicolas Depraetere & Martina Vandebroek, 2014. "Order selection in finite mixtures of linear regressions," Statistical Papers, Springer, vol. 55(3), pages 871-911, August.
    13. repec:jss:jstsof:06:i02 is not listed on IDEAS
    14. Moira Mckniff & Stephanie M. Simone & Tania Giovannetti, 2023. "Age, Loneliness, and Social Media Use in Adults during COVID-19: A Latent Profile Analysis," IJERPH, MDPI, vol. 20(11), pages 1-12, May.
    15. Yang, Chih-Chien, 2006. "Evaluating latent class analysis models in qualitative phenotype identification," Computational Statistics & Data Analysis, Elsevier, vol. 50(4), pages 1090-1104, February.
    16. Wenjie Duan & Yujia Fei & Xiaoqing Tang, 2020. "Latent Profiles and Grouping Effects of Resilience on Mental Health among Poor Children and Adolescents," Child Indicators Research, Springer;The International Society of Child Indicators (ISCI), vol. 13(2), pages 635-655, April.
    17. Md. Matiar Rahman & Mahbubul Muttakin & Animesh Pal & Abu Zar Shafiullah & Bidyut Baran Saha, 2019. "A Statistical Approach to Determine Optimal Models for IUPAC-Classified Adsorption Isotherms," Energies, MDPI, vol. 12(23), pages 1-34, November.
    18. Ana Oliveira-Brochado & Francisco Vitorino Martins, 2008. "Determining the Number of Market Segments Using an Experimental Design," FEP Working Papers 263, Universidade do Porto, Faculdade de Economia do Porto.
    19. Julian Rossbroich & Jeffrey Durieux & Tom F. Wilderjans, 2022. "Model Selection Strategies for Determining the Optimal Number of Overlapping Clusters in Additive Overlapping Partitional Clustering," Journal of Classification, Springer;The Classification Society, vol. 39(2), pages 264-301, July.
    20. Caili Liu & Yong Wei & Yu Ling & E. Scott Huebner & Yifang Zeng & Qin Yang, 2020. "Identifying Trajectories of Chinese High School Students’ Depressive Symptoms: an Application of Latent Growth Mixture Modeling," Applied Research in Quality of Life, Springer;International Society for Quality-of-Life Studies, vol. 15(3), pages 775-789, July.
    21. Bocci, Laura & Vicari, Donatella & Vichi, Maurizio, 2006. "A mixture model for the classification of three-way proximity data," Computational Statistics & Data Analysis, Elsevier, vol. 50(7), pages 1625-1654, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:56:y:2012:i:1:p:114-125. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.