IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v56y2012i10p2856-2863.html
   My bibliography  Save this article

Modelling over and undercounts for design-based Monte Carlo studies in small area estimation: An application to the German register-assisted census

Author

Listed:
  • Burgard, Jan Pablo
  • Münnich, Ralf T.

Abstract

In a register-assisted census, the main information about the population is obtained from population registers. Additionally, a sample is drawn to allow for the estimation of population counts for variables that are not included in the registers. Typically, registers suffer from over and undercounts. The over and undercounts are not observable from the register itself. In order to evaluate relevant estimation strategies to deal with over and undercounts, a reliable data set is to be used within a comprehensive Monte Carlo simulation study. This allows for comparing different estimators in a close-to-reality framework. The reliability of the data set is crucial and thus also the correct implementation of over and undercount structures. The impact of different over and undercounts modelling strategies on the prediction of the total population in considerably small regions within a register-assisted census framework is shown.

Suggested Citation

  • Burgard, Jan Pablo & Münnich, Ralf T., 2012. "Modelling over and undercounts for design-based Monte Carlo studies in small area estimation: An application to the German register-assisted census," Computational Statistics & Data Analysis, Elsevier, vol. 56(10), pages 2856-2863.
  • Handle: RePEc:eee:csdana:v:56:y:2012:i:10:p:2856-2863
    DOI: 10.1016/j.csda.2010.11.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947310004305
    Download Restriction: Full text for ScienceDirect subscribers only.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gonzalez-Manteiga, W. & Lombardia, M.J. & Molina, I. & Morales, D. & Santamaria, L., 2007. "Estimation of the mean squared error of predictors of small area linear parameters under a logistic mixed model," Computational Statistics & Data Analysis, Elsevier, vol. 51(5), pages 2720-2733, February.
    2. Jiming Jiang & P. Lahiri, 2006. "Mixed model prediction and small area estimation," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 15(1), pages 1-96, June.
    3. Haining, Robert & Law, Jane & Griffith, Daniel, 2009. "Modelling small area counts in the presence of overdispersion and spatial autocorrelation," Computational Statistics & Data Analysis, Elsevier, vol. 53(8), pages 2923-2937, June.
    4. González-Manteiga, W. & Lombardi­a, M.J. & Molina, I. & Morales, D. & Santamari­a, L., 2008. "Analytic and bootstrap approximations of prediction errors under a multivariate Fay-Herriot model," Computational Statistics & Data Analysis, Elsevier, vol. 52(12), pages 5242-5252, August.
    5. Ray Chambers & Nikos Tzavidis, 2006. "M-quantile models for small area estimation," Biometrika, Biometrika Trust, vol. 93(2), pages 255-268, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Friedrich, Ulf & Münnich, Ralf & de Vries, Sven & Wagner, Matthias, 2015. "Fast integer-valued algorithms for optimal allocations under constraints in stratified sampling," Computational Statistics & Data Analysis, Elsevier, vol. 92(C), pages 1-12.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:56:y:2012:i:10:p:2856-2863. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/locate/csda .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.