IDEAS home Printed from
   My bibliography  Save this article

Comparison of semiparametric maximum likelihood estimation and two-stage semiparametric estimation in copula models


  • Lawless, Jerald F.
  • Yilmaz, Yildiz E.


We consider bivariate distributions that are specified in terms of a parametric copula function and nonparametric or semiparametric marginal distributions. The performance of two semiparametric estimation procedures based on censored data is discussed: maximum likelihood (ML) and two-stage pseudolikelihood (PML) estimation. The two-stage procedure involves less computation and it is of interest to see whether it is significantly less efficient than the full maximum likelihood approach. We also consider cases where the copula model is misspecified, in which case PML may be better. Extensive simulation studies demonstrate that in the absence of covariates, two-stage estimation is highly efficient and has significant robustness advantages for estimating marginal distributions. In some settings, involving covariates and a high degree of association between responses, ML is more efficient. For the estimation of association, PML does not offer an advantage.

Suggested Citation

  • Lawless, Jerald F. & Yilmaz, Yildiz E., 2011. "Comparison of semiparametric maximum likelihood estimation and two-stage semiparametric estimation in copula models," Computational Statistics & Data Analysis, Elsevier, vol. 55(7), pages 2446-2455, July.
  • Handle: RePEc:eee:csdana:v:55:y:2011:i:7:p:2446-2455

    Download full text from publisher

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. repec:sae:ecolab:v:16:y:2006:i:2:p:1-2 is not listed on IDEAS
    2. Chen, Xiaohong & Fan, Yanqin & Tsyrennikov, Viktor, 2006. "Efficient Estimation of Semiparametric Multivariate Copula Models," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 1228-1240, September.
    3. Joe, Harry, 2005. "Asymptotic efficiency of the two-stage estimation method for copula-based models," Journal of Multivariate Analysis, Elsevier, vol. 94(2), pages 401-419, June.
    4. Nikolay Nenovsky & S. Statev, 2006. "Introduction," Post-Print halshs-00260898, HAL.
    5. Wenqing He & Jerald F. Lawless, 2005. "Bivariate location–scale models for regression analysis, with applications to lifetime data," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(1), pages 63-78, February.
    6. Kim, Gunky & Silvapulle, Mervyn J. & Silvapulle, Paramsothy, 2007. "Comparison of semiparametric and parametric methods for estimating copulas," Computational Statistics & Data Analysis, Elsevier, vol. 51(6), pages 2836-2850, March.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Denecke, Liesa & Müller, Christine H., 2011. "Robust estimators and tests for bivariate copulas based on likelihood depth," Computational Statistics & Data Analysis, Elsevier, vol. 55(9), pages 2724-2738, September.


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:55:y:2011:i:7:p:2446-2455. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.