IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v55y2011i7p2446-2455.html

Comparison of semiparametric maximum likelihood estimation and two-stage semiparametric estimation in copula models

Author

Listed:
  • Lawless, Jerald F.
  • Yilmaz, Yildiz E.

Abstract

We consider bivariate distributions that are specified in terms of a parametric copula function and nonparametric or semiparametric marginal distributions. The performance of two semiparametric estimation procedures based on censored data is discussed: maximum likelihood (ML) and two-stage pseudolikelihood (PML) estimation. The two-stage procedure involves less computation and it is of interest to see whether it is significantly less efficient than the full maximum likelihood approach. We also consider cases where the copula model is misspecified, in which case PML may be better. Extensive simulation studies demonstrate that in the absence of covariates, two-stage estimation is highly efficient and has significant robustness advantages for estimating marginal distributions. In some settings, involving covariates and a high degree of association between responses, ML is more efficient. For the estimation of association, PML does not offer an advantage.

Suggested Citation

  • Lawless, Jerald F. & Yilmaz, Yildiz E., 2011. "Comparison of semiparametric maximum likelihood estimation and two-stage semiparametric estimation in copula models," Computational Statistics & Data Analysis, Elsevier, vol. 55(7), pages 2446-2455, July.
  • Handle: RePEc:eee:csdana:v:55:y:2011:i:7:p:2446-2455
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-9473(11)00053-3
    Download Restriction: Full text for ScienceDirect subscribers only.
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Wenqing He & Jerald F. Lawless, 2003. "Flexible Maximum Likelihood Methods for Bivariate Proportional Hazards Models," Biometrics, The International Biometric Society, vol. 59(4), pages 837-848, December.
    2. Chen, Xiaohong & Fan, Yanqin & Tsyrennikov, Viktor, 2006. "Efficient Estimation of Semiparametric Multivariate Copula Models," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 1228-1240, September.
    3. Joe, Harry, 2005. "Asymptotic efficiency of the two-stage estimation method for copula-based models," Journal of Multivariate Analysis, Elsevier, vol. 94(2), pages 401-419, June.
    4. Edward Frees & Emiliano Valdez, 1998. "Understanding Relationships Using Copulas," North American Actuarial Journal, Taylor & Francis Journals, vol. 2(1), pages 1-25.
    5. Beaudoin, David & Duchesne, Thierry & Genest, Christian, 2007. "Improving the estimation of Kendall's tau when censoring affects only one of the variables," Computational Statistics & Data Analysis, Elsevier, vol. 51(12), pages 5743-5764, August.
    6. Wenqing He & Jerald F. Lawless, 2005. "Bivariate location–scale models for regression analysis, with applications to lifetime data," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(1), pages 63-78, February.
    7. Kim, Gunky & Silvapulle, Mervyn J. & Silvapulle, Paramsothy, 2007. "Comparison of semiparametric and parametric methods for estimating copulas," Computational Statistics & Data Analysis, Elsevier, vol. 51(6), pages 2836-2850, March.
    8. Yi Li & Ross L. Prentice & Xihong Lin, 2008. "Semiparametric maximum likelihood estimation in normal transformation models for bivariate survival data," Biometrika, Biometrika Trust, vol. 95(4), pages 947-960.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Denecke, Liesa & Müller, Christine H., 2011. "Robust estimators and tests for bivariate copulas based on likelihood depth," Computational Statistics & Data Analysis, Elsevier, vol. 55(9), pages 2724-2738, September.
    2. Dongdong Li & X. Joan Hu & Mary L. McBride & John J. Spinelli, 2020. "Multiple event times in the presence of informative censoring: modeling and analysis by copulas," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 26(3), pages 573-602, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kojadinovic, Ivan & Yan, Jun, 2010. "Comparison of three semiparametric methods for estimating dependence parameters in copula models," Insurance: Mathematics and Economics, Elsevier, vol. 47(1), pages 52-63, August.
    2. Genest, Christian & Rémillard, Bruno & Beaudoin, David, 2009. "Goodness-of-fit tests for copulas: A review and a power study," Insurance: Mathematics and Economics, Elsevier, vol. 44(2), pages 199-213, April.
    3. Bouezmarni, T. & Rombouts, J.V.K., 2009. "Semiparametric multivariate density estimation for positive data using copulas," Computational Statistics & Data Analysis, Elsevier, vol. 53(6), pages 2040-2054, April.
    4. Härdle, Wolfgang Karl & Okhrin, Ostap & Okhrin, Yarema, 2008. "Modeling dependencies in finance using copulae," SFB 649 Discussion Papers 2008-043, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    5. Cheng, Guang & Zhou, Lan & Chen, Xiaohong & Huang, Jianhua Z., 2014. "Efficient estimation of semiparametric copula models for bivariate survival data," Journal of Multivariate Analysis, Elsevier, vol. 123(C), pages 330-344.
    6. Liebscher, Eckhard, 2008. "Construction of asymmetric multivariate copulas," Journal of Multivariate Analysis, Elsevier, vol. 99(10), pages 2234-2250, November.
    7. Patton, Andrew, 2013. "Copula Methods for Forecasting Multivariate Time Series," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 899-960, Elsevier.
    8. Di Bernardino Elena & Rullière Didier, 2013. "On certain transformations of Archimedean copulas: Application to the non-parametric estimation of their generators," Dependence Modeling, De Gruyter, vol. 1(2013), pages 1-36, October.
    9. Almeida, Carlos & Czado, Claudia, 2012. "Efficient Bayesian inference for stochastic time-varying copula models," Computational Statistics & Data Analysis, Elsevier, vol. 56(6), pages 1511-1527.
    10. Zhao, XiaoBing & Zhou, Xian, 2010. "Applying copula models to individual claim loss reserving methods," Insurance: Mathematics and Economics, Elsevier, vol. 46(2), pages 290-299, April.
    11. Tahsin Baykal, 2025. "Joint frequency analysis of streamflow and sediment amount with copula functions in the Kızlırmak Basin, Turkey," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 121(4), pages 4219-4238, March.
    12. Christian Genest & Johanna Nešlehová & Johanna Ziegel, 2011. "Inference in multivariate Archimedean copula models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 20(2), pages 223-256, August.
    13. Dexen DZ. Xi & C.B. Dean & Stephen W. Taylor, 2020. "Modeling the duration and size of extended attack wildfires as dependent outcomes," Environmetrics, John Wiley & Sons, Ltd., vol. 31(5), August.
    14. Chen, Xiaohong & Fan, Yanqin & Pouzo, Demian & Ying, Zhiliang, 2010. "Estimation and model selection of semiparametric multivariate survival functions under general censorship," Journal of Econometrics, Elsevier, vol. 157(1), pages 129-142, July.
    15. Hobæk Haff, Ingrid, 2012. "Comparison of estimators for pair-copula constructions," Journal of Multivariate Analysis, Elsevier, vol. 110(C), pages 91-105.
    16. Sukjin Han & Sungwon Lee, 2019. "Estimation in a generalization of bivariate probit models with dummy endogenous regressors," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 34(6), pages 994-1015, September.
    17. Ehab M. Almetwally & Aisha Fayomi & Maha E. Qura, 2024. "Advanced Copula-Based Models for Type II Censored Data: Applications in Industrial and Medical Settings," Mathematics, MDPI, vol. 12(12), pages 1-35, June.
    18. Calabrese, Raffaella & Osmetti, Silvia Angela, 2019. "A new approach to measure systemic risk: A bivariate copula model for dependent censored data," European Journal of Operational Research, Elsevier, vol. 279(3), pages 1053-1064.
    19. Smith, Michael Stanley, 2023. "Implicit Copulas: An Overview," Econometrics and Statistics, Elsevier, vol. 28(C), pages 81-104.
    20. Manner, Hans & Alavi Fard, Farzad & Pourkhanali, Armin & Tafakori, Laleh, 2019. "Forecasting the joint distribution of Australian electricity prices using dynamic vine copulae," Energy Economics, Elsevier, vol. 78(C), pages 143-164.

    More about this item

    Keywords

    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:55:y:2011:i:7:p:2446-2455. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.