IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v55y2011i4p1736-1747.html
   My bibliography  Save this article

Hierarchical Bayes multivariate estimation of poverty rates based on increasing thresholds for small domains

Author

Listed:
  • Fabrizi, Enrico
  • Ferrante, Maria Rosaria
  • Pacei, Silvia
  • Trivisano, Carlo

Abstract

A model-based small area method for calculating estimates of poverty rates based on different thresholds for subsets of the Italian population is proposed. The subsets are obtained by cross-classifying by household type and administrative region. The suggested estimators satisfy the following coherence properties: (i) within a given area, rates associated with increasing thresholds are monotonically increasing; (ii) interval estimators have lower and upper bounds within the interval (0, 1); (iii) when a large domain-specific sample is available the small area estimate is close to the one obtained using standard design-based methods; (iv) estimates of poverty rates should also be produced for domains for which there is no sample or when no poor households are included in the sample. A hierarchical Bayesian approach to estimation is adopted. Posterior distributions are approximated by means of MCMC computation methods. Empirical analysis is based on data from the 2005 wave of the EU-SILC survey.

Suggested Citation

  • Fabrizi, Enrico & Ferrante, Maria Rosaria & Pacei, Silvia & Trivisano, Carlo, 2011. "Hierarchical Bayes multivariate estimation of poverty rates based on increasing thresholds for small domains," Computational Statistics & Data Analysis, Elsevier, vol. 55(4), pages 1736-1747, April.
  • Handle: RePEc:eee:csdana:v:55:y:2011:i:4:p:1736-1747
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-9473(10)00429-9
    Download Restriction: Full text for ScienceDirect subscribers only.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sharon L. Lohr & J. N. K. Rao, 2009. "Jackknife estimation of mean squared error of small area predictors in nonlinear mixed models," Biometrika, Biometrika Trust, vol. 96(2), pages 457-468.
    2. Isabel Molina & Ayoub Saei & M. José Lombardía, 2007. "Small area estimates of labour force participation under a multinomial logit mixed model," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 170(4), pages 975-1000, October.
    3. Longford, Nicholas T., 2010. "Small area estimation with spatial similarity," Computational Statistics & Data Analysis, Elsevier, vol. 54(4), pages 1151-1166, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bilton, Penny & Jones, Geoff & Ganesh, Siva & Haslett, Steve, 2017. "Classification trees for poverty mapping," Computational Statistics & Data Analysis, Elsevier, vol. 115(C), pages 53-66.
    2. Roberto Benavent & Domingo Morales, 2021. "Small area estimation under a temporal bivariate area-level linear mixed model with independent time effects," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 30(1), pages 195-222, March.
    3. Tsvetana Spasova, 2019. "Regional Income Distribution in the European Union: A Parametric Approach," Research on Economic Inequality, in: What Drives Inequality?, volume 27, pages 1-18, Emerald Group Publishing Limited.
    4. Silvia De Nicol`o & Maria Rosaria Ferrante & Silvia Pacei, 2021. "Mind the Income Gap: Bias Correction of Inequality Estimators in Small-Sized Samples," Papers 2107.08950, arXiv.org, revised May 2023.
    5. Souza Debora F. & Moura Fernando A. S., 2016. "Multivariate Beta Regression with Application in Small Area Estimation," Journal of Official Statistics, Sciendo, vol. 32(3), pages 747-768, September.
    6. Maria Rosaria Ferrante & Silvia Pacei, 2017. "Small domain estimation of business statistics by using multivariate skew normal models," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 180(4), pages 1057-1088, October.
    7. Fabrizi, Enrico & Trivisano, Carlo, 2016. "Small area estimation of the Gini concentration coefficient," Computational Statistics & Data Analysis, Elsevier, vol. 99(C), pages 223-234.
    8. Enrico Fabrizi & Maria Rosaria Ferrante & Carlo Trivisano, 2020. "A functional approach to small area estimation of the relative median poverty gap," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 183(3), pages 1273-1291, June.
    9. Enrico Fabrizi & Maria Ferrante & Carlo Trivisano, 2013. "Small area estimation of labor productivity for the Italian manufacturing SME cross-classified by region, industry and size," ERSA conference papers ersa13p894, European Regional Science Association.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. María Dolores Esteban & María José Lombardía & Esther López-Vizcaíno & Domingo Morales & Agustín Pérez, 2020. "Small area estimation of proportions under area-level compositional mixed models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 29(3), pages 793-818, September.
    2. Han Ying, 2020. "Discussion of “Small area estimation: its evolution in five decades”, by Malay Ghosh," Statistics in Transition New Series, Statistics Poland, vol. 21(4), pages 30-34, August.
    3. James Dawber & Nicola Salvati & Enrico Fabrizi & Nikos Tzavidis, 2022. "Expectile regression for multi‐category outcomes with application to small area estimation of labour force participation," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 185(S2), pages 590-619, December.
    4. Ying Han, 2020. "Discussion of "Small area estimation: its evolution in five decades", by Malay Ghosh," Statistics in Transition New Series, Polish Statistical Association, vol. 21(4), pages 30-34, August.
    5. Angelo Moretti, 2023. "Estimation of small area proportions under a bivariate logistic mixed model," Quality & Quantity: International Journal of Methodology, Springer, vol. 57(4), pages 3663-3684, August.
    6. María Dolores Esteban & María José Lombardía & Esther López‐Vizcaíno & Domingo Morales & Agustín Pérez, 2022. "Empirical best prediction of small area bivariate parameters," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 49(4), pages 1699-1727, December.
    7. Tzavidis, Nikos & Zhang, Li-Chun & Luna Hernandez, Angela & Schmid, Timo & Rojas-Perilla, Natalia, 2016. "From start to finish: A framework for the production of small area official statistics," Discussion Papers 2016/13, Free University Berlin, School of Business & Economics.
    8. Angela Luna & Li-Chun Zhang & Alison Whitworth & Kirsten Piller, 2015. "Small Area Estimates Of The Population Distribution By Ethnic Group In England: A Proposal Using Structure Preserving Estimators," Statistics in Transition New Series, Polish Statistical Association, vol. 16(4), pages 585-602, December.
    9. William Joe & Suresh Sharma & Jyotsna Sharma & Y Manasa Shanta & B Subha Sri, 2015. "Maternal Mortality in India: A Review of Trends and Patterns," IEG Working Papers 353, Institute of Economic Growth.
    10. Chandra, Hukum & Salvati, Nicola & Chambers, Ray, 2018. "Small area estimation under a spatially non-linear model," Computational Statistics & Data Analysis, Elsevier, vol. 126(C), pages 19-38.
    11. Merfeld,Joshua David & Newhouse,David Locke & Weber,Michael & Lahiri,Partha, 2022. "Combining Survey and Geospatial Data Can Significantly Improve Gender-DisaggregatedEstimates of Labor Market Outcomes," Policy Research Working Paper Series 10077, The World Bank.
    12. Shonosuke Sugasawa & Tatsuya Kubokawa & Kota Ogasawara, 2017. "Empirical Uncertain Bayes Methods in Area-level Models," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 44(3), pages 684-706, September.
    13. Tapabrata Maiti & Hao Ren & Samiran Sinha, 2014. "Prediction Error of Small Area Predictors Shrinking Both Means and Variances," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 41(3), pages 775-790, September.
    14. Nikos Tzavidis & Li‐Chun Zhang & Angela Luna & Timo Schmid & Natalia Rojas‐Perilla, 2018. "From start to finish: a framework for the production of small area official statistics," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 181(4), pages 927-979, October.
    15. Isabel Molina & Ewa Strzalkowska‐Kominiak, 2020. "Estimation of proportions in small areas: application to the labour force using the Swiss Census Structural Survey," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 183(1), pages 281-310, January.
    16. Domingo Morales & Joscha Krause & Jan Pablo Burgard, 2022. "On the Use of Aggregate Survey Data for Estimating Regional Major Depressive Disorder Prevalence," Psychometrika, Springer;The Psychometric Society, vol. 87(1), pages 344-368, March.
    17. Kawakubo, Yuki & Kobayashi, Genya, 2023. "Small area estimation of general finite-population parameters based on grouped data," Computational Statistics & Data Analysis, Elsevier, vol. 184(C).
    18. Jan Pablo Burgard & María Dolores Esteban & Domingo Morales & Agustín Pérez, 2021. "Small area estimation under a measurement error bivariate Fay–Herriot model," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 30(1), pages 79-108, March.
    19. Joscha Krause & Jan Pablo Burgard & Domingo Morales, 2022. "$$\ell _2$$ ℓ 2 -penalized approximate likelihood inference in logit mixed models for regional prevalence estimation under covariate rank-deficiency," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 85(4), pages 459-489, May.
    20. Alfredo A. Romero, 2014. "Where do Moderation Terms Come from in Binary Choice Models?," Central European Journal of Economic Modelling and Econometrics, Central European Journal of Economic Modelling and Econometrics, vol. 6(1), pages 57-68, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:55:y:2011:i:4:p:1736-1747. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.