IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this article or follow this journal

Fast computation of high-dimensional multivariate normal probabilities

  • Phinikettos, Ioannis
  • Gandy, Axel
Registered author(s):

    A new efficient method is proposed to compute multivariate normal probabilities over rectangles in high dimensions. The method exploits four variance reduction techniques: conditional Monte Carlo, importance sampling, splitting and control variates. Simulation results are presented that evaluate the performance of the new proposed method. The new method is designed for computing small exceedance probabilities.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL: http://www.sciencedirect.com/science/article/B6V8V-518TY3H-1/2/af4b49576eb9b2b09804556042f14d25
    Download Restriction: Full text for ScienceDirect subscribers only.

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Article provided by Elsevier in its journal Computational Statistics & Data Analysis.

    Volume (Year): 55 (2011)
    Issue (Month): 4 (April)
    Pages: 1521-1529

    as
    in new window

    Handle: RePEc:eee:csdana:v:55:y:2011:i:4:p:1521-1529
    Contact details of provider: Web page: http://www.elsevier.com/locate/csda

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

    as in new window
    1. Tetsuhisa Miwa & A. J. Hayter & Satoshi Kuriki, 2003. "The evaluation of general non-centred orthant probabilities," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 65(1), pages 223-234.
    2. D. Y. Lin & L. J. Wei & Z. Ying, 2002. "Model-Checking Techniques Based on Cumulative Residuals," Biometrics, The International Biometric Society, vol. 58(1), pages 1-12, 03.
    3. Sandor, Zsolt & Andras, P.Peter, 2004. "Alternative sampling methods for estimating multivariate normal probabilities," Journal of Econometrics, Elsevier, vol. 120(2), pages 207-234, June.
    4. Wang, Morgan & Kennedy, W. J., 1992. "A numerical method for accurately approximating multivariate normal probabilities," Computational Statistics & Data Analysis, Elsevier, vol. 13(2), pages 197-210, March.
    5. Vijverberg, Wim P. M., 1997. "Monte Carlo evaluation of multivariate normal probabilities," Journal of Econometrics, Elsevier, vol. 76(1-2), pages 281-307.
    Full references (including those not matched with items on IDEAS)

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:55:y:2011:i:4:p:1521-1529. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Zhang, Lei)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.