IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v55y2011i12p3183-3196.html

Some variants of adaptive sampling procedures and their applications

Author

Listed:
  • Sengupta, Raghu Nandan
  • Sengupta, Angana

Abstract

Sequential analysis as a sampling technique facilitates efficient statistical inference by considering less number of observations in comparison to the fixed sampling method. The optimal stopping rule dictates the sample size and also the statistical inference deduced thereafter. In this research we propose three variants of the already existing multistage sampling procedures and name them as (i) Jump and Crawl (JC), (ii) Batch Crawl and Jump (BCJ) and (iii) Batch Jump and Crawl (BJC) sequential sampling methods. We use the (i) normal, (ii) exponential, (iii) gamma and (iv) extreme value distributions for the point estimation problems under bounded risk conditions. We highlight the efficacy of using the right adaptive sampling plan for the bounded risk problems for these four distributions, considering two different loss functions, namely (i) squared error loss (SEL) and (ii) linear exponential (LINEX) loss functions. Comparison and analysis of our proposed methods with existing sequential sampling techniques is undertaken and the importance of this study is highlighted using extensive theoretical simulation runs.

Suggested Citation

  • Sengupta, Raghu Nandan & Sengupta, Angana, 2011. "Some variants of adaptive sampling procedures and their applications," Computational Statistics & Data Analysis, Elsevier, vol. 55(12), pages 3183-3196, December.
  • Handle: RePEc:eee:csdana:v:55:y:2011:i:12:p:3183-3196
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S016794731100199X
    Download Restriction: Full text for ScienceDirect subscribers only.
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Carvalho, Carlos M. & Lopes, Hedibert F., 2007. "Simulation-based sequential analysis of Markov switching stochastic volatility models," Computational Statistics & Data Analysis, Elsevier, vol. 51(9), pages 4526-4542, May.
    2. Cui, Yin & Fu, Yuejiao & Hussein, Abdulkadir, 2009. "Group sequential testing of homogeneity in genetic linkage analysis," Computational Statistics & Data Analysis, Elsevier, vol. 53(10), pages 3630-3639, August.
    3. Raghu Nandan Sengupta, 2008. "Use of asymmetric loss functions in sequential estimation problems for multiple linear regression," Journal of Applied Statistics, Taylor & Francis Journals, vol. 35(3), pages 245-261.
    4. Salvan, Alessandra, 1990. "Planning sequential clinical trials: A review," Computational Statistics & Data Analysis, Elsevier, vol. 9(1), pages 47-56, January.
    5. Alp, Tansel & Demetrescu, Matei, 2010. "Joint forecasts of Dow Jones stocks under general multivariate loss function," Computational Statistics & Data Analysis, Elsevier, vol. 54(11), pages 2360-2371, November.
    6. Bollen, Nicolas P. B. & Gray, Stephen F. & Whaley, Robert E., 2000. "Regime switching in foreign exchange rates: Evidence from currency option prices," Journal of Econometrics, Elsevier, vol. 94(1-2), pages 239-276.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xi, Xiaojing & Mamon, Rogemar, 2011. "Parameter estimation of an asset price model driven by a weak hidden Markov chain," Economic Modelling, Elsevier, vol. 28(1-2), pages 36-46, January.
    2. Raggi, Davide & Bordignon, Silvano, 2012. "Long memory and nonlinearities in realized volatility: A Markov switching approach," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3730-3742.
    3. Wilfling, Bernd, 2009. "Volatility regime-switching in European exchange rates prior to monetary unification," Journal of International Money and Finance, Elsevier, vol. 28(2), pages 240-270, March.
    4. Enrique Ter Horst & Abel Rodriguez & Henryk Gzyl & German Molina, 2012. "Stochastic volatility models including open, close, high and low prices," Quantitative Finance, Taylor & Francis Journals, vol. 12(2), pages 199-212, May.
    5. Perotti, Enrico & Driessen, Joost, 2004. "Confidence Building on Euro Conversion: Theory and Evidence from Currency Options," CEPR Discussion Papers 4180, C.E.P.R. Discussion Papers.
    6. Lin, Shih-Kuei & Lin, Chien-Hsiu & Chuang, Ming-Che & Chou, Chia-Yu, 2014. "A recursive formula for a participating contract embedding a surrender option under regime-switching model with jump risks: Evidence from stock indices," Economic Modelling, Elsevier, vol. 38(C), pages 341-350.
    7. Kenichiro McAlinn & Asahi Ushio & Teruo Nakatsuma, 2016. "Volatility Forecasts Using Nonlinear Leverage Effects," Papers 1605.06482, arXiv.org, revised Dec 2017.
    8. Luc Bauwens & Arie Preminger & Jeroen V. K. Rombouts, 2010. "Theory and inference for a Markov switching GARCH model," Econometrics Journal, Royal Economic Society, vol. 13(2), pages 218-244, July.
    9. Hong, Yongmiao & Li, Haitao & Zhao, Feng, 2007. "Can the random walk model be beaten in out-of-sample density forecasts? Evidence from intraday foreign exchange rates," Journal of Econometrics, Elsevier, vol. 141(2), pages 736-776, December.
    10. Carlos A. Abanto‐Valle & Helio S. Migon & Hedibert F. Lopes, 2010. "Bayesian modeling of financial returns: A relationship between volatility and trading volume," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 26(2), pages 172-193, March.
    11. Loriana Pelizzon & Monica Billio & Mila Getmansky, 2008. "Crisis and Hedge Fund Risk," Working Papers 2008_10, Department of Economics, University of Venice "Ca' Foscari".
    12. repec:bgu:wpaper:0605 is not listed on IDEAS
    13. Neeraj Joshi & Sudeep R. Bapat & Raghu Nandan Sengupta, 2025. "Two-stage and purely sequential minimum risk point estimation of the scale parameter of a family of distributions under modified LINEX loss plus sampling cost," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 88(5), pages 689-707, July.
    14. Beine, Michel & Laurent, Sebastien & Lecourt, Christelle, 2003. "Official central bank interventions and exchange rate volatility: Evidence from a regime-switching analysis," European Economic Review, Elsevier, vol. 47(5), pages 891-911, October.
    15. Colavecchio, Roberta & Funke, Michael, 2008. "Volatility transmissions between renminbi and Asia-Pacific on-shore and off-shore U.S. dollar futures," China Economic Review, Elsevier, vol. 19(4), pages 635-648, December.
    16. T. G. Saji, 2019. "Can BRICS Form a Currency Union? An Analysis under Markov Regime-Switching Framework," Global Business Review, International Management Institute, vol. 20(1), pages 151-165, February.
    17. Afanasyev, Dmitriy O. & Fedorova, Elena & Ledyaeva, Svetlana, 2021. "Strength of words: Donald Trump's tweets, sanctions and Russia's ruble," Journal of Economic Behavior & Organization, Elsevier, vol. 184(C), pages 253-277.
    18. Cheung, Yin-Wong & Erlandsson, Ulf G., 2005. "Exchange Rates and Markov Switching Dynamics," Journal of Business & Economic Statistics, American Statistical Association, vol. 23, pages 314-320, July.
    19. Chao-Chun Chen & Wen-Jen Tsay, 2007. "Estimating Markov-Switching ARMA Models with Extended Algorithms of Hamilton," IEAS Working Paper : academic research 07-A009, Institute of Economics, Academia Sinica, Taipei, Taiwan.
    20. McKenzie, Michael D. & Kim, Suk-Joong, 2007. "Evidence of an asymmetry in the relationship between volatility and autocorrelation," International Review of Financial Analysis, Elsevier, vol. 16(1), pages 22-40.
    21. Francq, Christian & ZakoI¨an, Jean-Michel, 2008. "Deriving the autocovariances of powers of Markov-switching GARCH models, with applications to statistical inference," Computational Statistics & Data Analysis, Elsevier, vol. 52(6), pages 3027-3046, February.

    More about this item

    Keywords

    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:55:y:2011:i:12:p:3183-3196. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.