IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v53y2009i12p4083-4094.html
   My bibliography  Save this article

On progressively censored competing risks data for Weibull distributions

Author

Listed:
  • Pareek, Bhuvanesh
  • Kundu, Debasis
  • Kumar, Sumit

Abstract

In survival analysis, or in reliability study, an investigator is often interested in the assessment of a specific risk in the presence of other risk factors. It is well known as the competing risks problem in statistical literature. Moreover, censoring is inevitable in any life testing or reliability study. In this paper, we consider a very general censoring scheme, namely a progressive censoring scheme. It is further assumed that the lifetime distribution of the individual causes are independent and Weibull-distributed with the same shape parameters but different scale parameters. We obtain the maximum likelihood and approximate maximum likelihood estimates of the unknown parameters. We also compute the observed Fisher information matrix using the missing information principles, and use them to compute the asymptotic confidence intervals. Monte Carlo simulations are performed to compare the performances of the different methods, and one data set is analyzed for illustrative purposes. We also discuss different optimality criteria, and selected optimal progressive censoring plans are presented.

Suggested Citation

  • Pareek, Bhuvanesh & Kundu, Debasis & Kumar, Sumit, 2009. "On progressively censored competing risks data for Weibull distributions," Computational Statistics & Data Analysis, Elsevier, vol. 53(12), pages 4083-4094, October.
  • Handle: RePEc:eee:csdana:v:53:y:2009:i:12:p:4083-4094
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-9473(09)00161-3
    Download Restriction: Full text for ScienceDirect subscribers only.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ng, H. K. T. & Chan, P. S. & Balakrishnan, N., 2002. "Estimation of parameters from progressively censored data using EM algorithm," Computational Statistics & Data Analysis, Elsevier, vol. 39(4), pages 371-386, June.
    2. Burkschat, M. & Cramer, E. & Kamps, U., 2006. "On optimal schemes in progressive censoring," Statistics & Probability Letters, Elsevier, vol. 76(10), pages 1032-1036, May.
    3. N. Balakrishnan, 2007. "Progressive censoring methodology: an appraisal," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 16(2), pages 211-259, August.
    4. Bing Wang & Keming Yu, 2009. "Optimum plan for step-stress model with progressive type-II censoring," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 18(1), pages 115-135, May.
    5. Balakrishnan, N. & Kateri, M., 2008. "On the maximum likelihood estimation of parameters of Weibull distribution based on complete and censored data," Statistics & Probability Letters, Elsevier, vol. 78(17), pages 2971-2975, December.
    6. Balakrishnan, N. & Burkschat, Marco & Cramer, Erhard & Hofmann, Glenn, 2008. "Fisher information based progressive censoring plans," Computational Statistics & Data Analysis, Elsevier, vol. 53(2), pages 366-380, December.
    7. Erhard Cramer & Udo Kamps, 1996. "Sequential order statistics and k-out-of-n systems with sequentially adjusted failure rates," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 48(3), pages 535-549, September.
    8. Yao Zhang & William Q. Meeker, 2005. "Bayesian life test planning for the Weibull distribution with given shape parameter," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 61(3), pages 237-249, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rui Hua & Wenhao Gui, 2022. "Revisit to progressively Type-II censored competing risks data from Lomax distributions," Journal of Risk and Reliability, , vol. 236(3), pages 377-394, June.
    2. Junru Ren & Wenhao Gui, 2021. "Inference and optimal censoring scheme for progressively Type-II censored competing risks model for generalized Rayleigh distribution," Computational Statistics, Springer, vol. 36(1), pages 479-513, March.
    3. Hanan Haj Ahmad & Mohamed Aboshady & Mahmoud Mansour, 2024. "The Role of Risk Factors in System Performance: A Comprehensive Study with Adaptive Progressive Type-II Censoring," Mathematics, MDPI, vol. 12(11), pages 1-21, June.
    4. U. H. Salemi & S. Rezaei & Y. Si & S. Nadarajah, 2018. "On Optimal Progressive Censoring Schemes for Normal Distribution," Annals of Data Science, Springer, vol. 5(4), pages 637-658, December.
    5. Feizjavadian, S.H. & Hashemi, R., 2015. "Analysis of dependent competing risks in the presence of progressive hybrid censoring using Marshall–Olkin bivariate Weibull distribution," Computational Statistics & Data Analysis, Elsevier, vol. 82(C), pages 19-34.
    6. Muqrin A. Almuqrin & Mukhtar M. Salah & Essam A. Ahmed, 2022. "Statistical Inference for Competing Risks Model with Adaptive Progressively Type-II Censored Gompertz Life Data Using Industrial and Medical Applications," Mathematics, MDPI, vol. 10(22), pages 1-38, November.
    7. Wu, Shuo-Jye & Huang, Syuan-Rong, 2012. "Progressively first-failure censored reliability sampling plans with cost constraint," Computational Statistics & Data Analysis, Elsevier, vol. 56(6), pages 2018-2030.
    8. Mazen Nassar & Refah Alotaibi & Ahmed Elshahhat, 2023. "Reliability Estimation of XLindley Constant-Stress Partially Accelerated Life Tests using Progressively Censored Samples," Mathematics, MDPI, vol. 11(6), pages 1-24, March.
    9. Mazen Nassar & Refah Alotaibi & Chunfang Zhang, 2022. "Estimation of Reliability Indices for Alpha Power Exponential Distribution Based on Progressively Censored Competing Risks Data," Mathematics, MDPI, vol. 10(13), pages 1-25, June.
    10. Subhankar Dutta & Suchandan Kayal, 2023. "Inference of a competing risks model with partially observed failure causes under improved adaptive type-II progressive censoring," Journal of Risk and Reliability, , vol. 237(4), pages 765-780, August.
    11. Manoj Chacko & Rakhi Mohan, 2019. "Bayesian analysis of Weibull distribution based on progressive type-II censored competing risks data with binomial removals," Computational Statistics, Springer, vol. 34(1), pages 233-252, March.
    12. Jung-In Seo & Young Eun Jeon & Suk-Bok Kang, 2020. "New Approach for a Weibull Distribution under the Progressive Type-II Censoring Scheme," Mathematics, MDPI, vol. 8(10), pages 1-10, October.
    13. Cramer, Erhard & Schmiedt, Anja Bettina, 2011. "Progressively Type-II censored competing risks data from Lomax distributions," Computational Statistics & Data Analysis, Elsevier, vol. 55(3), pages 1285-1303, March.
    14. Jiaxin Nie & Wenhao Gui, 2019. "Parameter Estimation of Lindley Distribution Based on Progressive Type-II Censored Competing Risks Data with Binomial Removals," Mathematics, MDPI, vol. 7(7), pages 1-15, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Balakrishnan, N. & Kundu, Debasis, 2013. "Hybrid censoring: Models, inferential results and applications," Computational Statistics & Data Analysis, Elsevier, vol. 57(1), pages 166-209.
    2. Ritwik Bhattacharya, 2020. "Implementation of compound optimal design strategy in censored life-testing experiment," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 29(4), pages 1029-1050, December.
    3. Benjamin Laumen & Erhard Cramer, 2019. "Stage life testing," Naval Research Logistics (NRL), John Wiley & Sons, vol. 66(8), pages 632-647, December.
    4. Essam A. Ahmed, 2017. "Estimation and prediction for the generalized inverted exponential distribution based on progressively first-failure-censored data with application," Journal of Applied Statistics, Taylor & Francis Journals, vol. 44(9), pages 1576-1608, July.
    5. U. H. Salemi & S. Rezaei & Y. Si & S. Nadarajah, 2018. "On Optimal Progressive Censoring Schemes for Normal Distribution," Annals of Data Science, Springer, vol. 5(4), pages 637-658, December.
    6. M. Razmkhah & S. Simriz, 2018. "Statistical inferences based on INID progressively type II censored order statistics," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 70(3), pages 583-604, June.
    7. Cramer, Erhard & Schmiedt, Anja Bettina, 2011. "Progressively Type-II censored competing risks data from Lomax distributions," Computational Statistics & Data Analysis, Elsevier, vol. 55(3), pages 1285-1303, March.
    8. Marcus Johnen & Stefan Bedbur & Udo Kamps, 2020. "A note on multiple roots of a likelihood equation for Weibull sequential order statistics," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 83(4), pages 519-525, May.
    9. Park, Sangun & Ng, Hon Keung Tony & Chan, Ping Shing, 2015. "On the Fisher information and design of a flexible progressive censored experiment," Statistics & Probability Letters, Elsevier, vol. 97(C), pages 142-149.
    10. Balakrishnan, N. & Saleh, H.M., 2011. "Relations for moments of progressively Type-II censored order statistics from half-logistic distribution with applications to inference," Computational Statistics & Data Analysis, Elsevier, vol. 55(10), pages 2775-2792, October.
    11. Refah Alotaibi & Ehab M. Almetwally & Qiuchen Hai & Hoda Rezk, 2022. "Optimal Test Plan of Step Stress Partially Accelerated Life Testing for Alpha Power Inverse Weibull Distribution under Adaptive Progressive Hybrid Censored Data and Different Loss Functions," Mathematics, MDPI, vol. 10(24), pages 1-24, December.
    12. Kousik Maiti & Suchandan Kayal, 2023. "Estimating Reliability Characteristics of the Log-Logistic Distribution Under Progressive Censoring with Two Applications," Annals of Data Science, Springer, vol. 10(1), pages 89-128, February.
    13. Basak, Prasanta & Basak, Indrani & Balakrishnan, N., 2009. "Estimation for the three-parameter lognormal distribution based on progressively censored data," Computational Statistics & Data Analysis, Elsevier, vol. 53(10), pages 3580-3592, August.
    14. M. Hermanns & E. Cramer, 2018. "Inference with progressively censored k-out-of-n system lifetime data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 27(4), pages 787-810, December.
    15. Park, Sangun & Ng, Hon Keung Tony, 2012. "Missing information and an optimal one-step plan in a Type II progressive censoring scheme," Statistics & Probability Letters, Elsevier, vol. 82(2), pages 396-402.
    16. Sen, Ananda & Kannan, Nandini & Kundu, Debasis, 2013. "Bayesian planning and inference of a progressively censored sample from linear hazard rate distribution," Computational Statistics & Data Analysis, Elsevier, vol. 62(C), pages 108-121.
    17. Musleh, Rola M. & Helu, Amal, 2014. "Estimation of the inverse Weibull distribution based on progressively censored data: Comparative study," Reliability Engineering and System Safety, Elsevier, vol. 131(C), pages 216-227.
    18. Chien-Tai Lin & N. Balakrishnan, 2011. "Asymptotic properties of maximum likelihood estimators based on progressive Type-II censoring," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 74(3), pages 349-360, November.
    19. Soliman, Ahmed A. & Abd-Ellah, Ahmed H. & Abou-Elheggag, Naser A. & Abd-Elmougod, Gamal A., 2012. "Estimation of the parameters of life for Gompertz distribution using progressive first-failure censored data," Computational Statistics & Data Analysis, Elsevier, vol. 56(8), pages 2471-2485.
    20. Balakrishnan, N. & Burkschat, Marco & Cramer, Erhard & Hofmann, Glenn, 2008. "Fisher information based progressive censoring plans," Computational Statistics & Data Analysis, Elsevier, vol. 53(2), pages 366-380, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:53:y:2009:i:12:p:4083-4094. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.